

 Recognizing meaningful word sequences from sound (or sign) is a remarkable feat of human intelligence

 Recognizing meaningful word sequences from sound (or sign) is a remarkable feat of human intelligence

 Recognizing meaningful word sequences from sound (or sign) is a remarkable feat of human intelligence

 Recognizing meaningful word sequences from sound (or sign) is a remarkable feat of human intelligence

- The problem's harder than everyday experience suggests
 - What are all the sentences that each recording could be?

- The problem's harder than everyday experience suggests
 - What are all the sentences that each recording could be?

- The problem's harder than everyday experience suggests
- What are all the sentences that each recording could be? It's not easy to recognize speech

- The problem's harder than everyday experience suggests
 - What are all the sentences that each recording could be?

It's not easy to recognize speech

It's not easy to wreck a nice beach

- The problem's harder than everyday experience suggests
 - What are all the sentences that each recording could be?

It's not easy to recognize speech

It's not easy to wreck a nice beach

- The problem's harder than everyday experience suggests
 - What are all the sentences that each recording could be?

It's not easy to wreck a nice beach

- The problem's harder than everyday experience suggests
 - What are all the sentences that each recording could be?

It's not easy to wreck a nice beach Phil and Mary are our young cousins

- The problem's harder than everyday experience suggests
 - What are all the sentences that each recording could be?

It's not easy to wreck a nice beach Phil and Mary are our young cousins

- The problem's harder than everyday experience suggests
 - What are all the sentences that each recording could be?

It's not easy to recognize speech Phil and Mary are young cousins Yanny

It's not easy to wreck a nice beach Phil and Mary are our young cousins

- The problem's harder than everyday experience suggests
 - What are all the sentences that each recording could be?

It's not easy to recognize speech

Phil and Mary are young cousins

Yanny

It's not easy to wreck a nice beach Phil and Mary are our young cousins

Laurel

- The problem's harder than everyday experience suggests
- What are all the sentences that each recording could be?

 It's not easy to recognize speech

 Phil and Mary are young cousins

 Yanny

 It's not easy to wreck a nice beach Phil and Mary are our young cousins

Computer speech recognition is impressive but still fragile

Laurel

- We'll break down this hard & complex problem into something much simpler, and then scale up
- How to discriminate two minimally different sounds?

Label each one

When do you hear the transition?

- We'll break down this hard & complex problem into something much simpler, and then scale up
- How to discriminate two minimally different sounds?

Label each one

When do you hear the transition?

- We'll break down this hard & complex problem into something much simpler, and then scale up
- How to discriminate two minimally different sounds?

Label each one

When do you hear the transition?

This distinction involves a single "phonetic dimension", Voice Onset Time (VOT)

This distinction involves a single "phonetic dimension", Voice Onset Time (VOT)

This distinction involves a single "phonetic dimension", Voice Onset Time (VOT)

Distribution of VOTs

Human Categorization Curve

P(VOT | class)

How can we reconcile these two distributions?

 Background assumption: cognitive agent is optimized via evolution and learning to solve everyday tasks effectively

- Background assumption: cognitive agent is optimized via evolution and learning to solve everyday tasks effectively
- 1. Specify precisely the goals of the cognitive system

- Background assumption: cognitive agent is optimized via evolution and learning to solve everyday tasks effectively
- 1. Specify precisely the goals of the cognitive system
- 2. Formalize model of the environment to which the cognitive system is adapted

- Background assumption: cognitive agent is optimized via evolution and learning to solve everyday tasks effectively
- 1. Specify precisely the goals of the cognitive system
- 2. Formalize model of the environment to which the cognitive system is adapted
- 3. Make minimal assumptions re: computational limitations

- Background assumption: cognitive agent is optimized via evolution and learning to solve everyday tasks effectively
- 1. Specify precisely the goals of the cognitive system
- 2. Formalize model of the environment to which the cognitive system is adapted
- 3. Make minimal assumptions re: computational limitations
- 4. Derive predicted optimal behavior given 1-3

- Background assumption: cognitive agent is optimized via evolution and learning to solve everyday tasks effectively
- 1. Specify precisely the goals of the cognitive system
- 2. Formalize model of the environment to which the cognitive system is adapted
- 3. Make minimal assumptions re: computational limitations
- 4. Derive predicted optimal behavior given 1–3
- 5. Compare predictions with empirical data

- Background assumption: cognitive agent is optimized via evolution and learning to solve everyday tasks effectively
- 1. Specify precisely the goals of the cognitive system
- 2. Formalize model of the environment to which the cognitive system is adapted
- 3. Make minimal assumptions re: computational limitations
- 4. Derive predicted optimal behavior given 1–3
- 5. Compare predictions with empirical data
- 6. If necessary, iterate 1–5

Assume sound category c manifests as speech signal S

We can use Bayesian inference to infer c from S

Assume sound category c manifests as speech signal S

We can use Bayesian inference to infer c from S^{*}

- We can use Bayesian inference to infer c from S
- To make this work, we need to choose:

- We can use Bayesian inference to infer c from S
- To make this work, we need to choose:
 - a *prior* P(c); and
 - a *likelihood* P(S|c)

- We can use Bayesian inference to infer c from S^{*}
- To make this work, we need to choose:
 - a *prior* P(c); and
 - a *likelihood* P(S|c)
- Out of context, the prior might be uniform

$$P(c = /b/) = P(c = /p/) = \frac{1}{2}$$

$$p(x | \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[\frac{-(x - \mu)^2}{2\sigma^2} \right]$$

The normal (a.k.a. Gaussian)
 distribution is a reasonable proxy

Squared deviation from mean

$$p(x | \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[\frac{-(x - \mu)^2}{2\sigma^2} \right]$$

The normal (a.k.a. Gaussian)
 distribution is a reasonable proxy

Squared deviation from mean

$$p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[\frac{-(x - \mu)^2}{2\sigma^2} \right]$$

Scaled by variance

The normal (a.k.a. Gaussian)
 distribution is a reasonable proxy

Squared deviation from mean

$$p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp$$
(normalizing constant)

Scaled by

(normalizing constant)

variance

Gaussian parameters

Bayesian categorization curve

$$P(c|S) \propto P(S|c)P(c)$$

Bayesian categorization curve

Bayesian categorization curve

Inter-speaker variability

Ideal observer predictions

Ideal observer predictions

Testing effects of environment variability

- Clayards et al. (2008) tested this prediction
 - trained participants with different-variance Gaussians
 - then tested categorization

Testing effects of environment variability

- Clayards et al. (2008) tested this prediction
 - trained participants with different-variance Gaussians
 - then tested categorization

Testing effects of environment variability

- Clayards et al. (2008) tested this prediction
 - trained participants with different-variance Gaussians
 - then tested categorization

 We covered a simple case of classification in a continuous-signal setting: phoneme identification

- We covered a simple case of classification in a continuous-signal setting: phoneme identification
- We covered the principles of rational analysis that allow us to construct an ideal observer model of the process

- We covered a simple case of classification in a continuous-signal setting: phoneme identification
- We covered the principles of rational analysis that allow us to construct an ideal observer model of the process
- We used Bayesian inference to implement that model

- We covered a simple case of classification in a continuous-signal setting: phoneme identification
- We covered the principles of rational analysis that allow us to construct an ideal observer model of the process
- We used Bayesian inference to implement that model
- We explored a theoretical prediction of the implemented model and saw that experimental data confirmed the prediction