Speech perception

e Recognizing meaningful word sequences from sound (or
sign) is a remarkable feat of human intelligence
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e Other species don’t do this, as far as we know




Speech perception

 The problem's harder than everyday experience suggests

e What are all the sentences that each recording could be?
It's not easy to recognize speech Phil and Mary are young cousins Yanny

It's not easy to wreck a nice beach Phil and Mary are our young cousins [ aurel

e Computer speech recognition is impressive but still fragile
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A minimal problem in speech perception

e We’ll break down this hard & complex problem into
something much simpler, and then scale up

* How to discriminate two minimally different sounds?

Label each one When do you hear the transition?



A minimal problem in speech perception
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Distribution of VOTs
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Human Categorization Curve
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Generative, or forward, Classification (“reverse-engineering’)

distributional knowledge behavior
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How can we reconcile these two distributions?



Rational analysis

e Background assumption: cognitive agent is optimized via
evolution and learning to solve everyday tasks effectively

1. Specify precisely the goals of the cognitive system

2. Formalize model of the environment to which the
cognitive system is adapted

Make minimal assumptions re: computational limitations
Derive predicted optimal behavior given 1-3

Compare predictions with empirical data

2

If necessary, iterate 1-5

(Anderson, 1990, 1991)



Modeling VOT-based recognition

e Assume sound category ¢ manifests as speech signal S
Generative P(C‘S) — P(S|C)P(C)
process
& > P(S|d)P(c)

 We can use Bayesian inference to infer ¢ from SJ
 To make this work, we need to choose:

e a prior P(c); and

e a likelihood P(S|c)
e QOut of context, the prior might be uni{orm

P(c =/bl)y = P(c =/p/) = 5




Likelihood for a phonetic dimension

e The normal (a.k.a. Gaussian) :
distribution is a reasonable proxy :
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Inference of phonetic category

P(/b/)=P(/p/)=0.5

\

P(c|S) < P(S|c)P(c)

S|c ~ N, 6°)

“S is normally distributed with
mean . and variance 02
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Probability density
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0 40
VOT (ms)

80

1.00 -

P(c|S)  P(S|c)P(c)

0.75+

bIVOT)

P(c=

0.25+

0.00 -

0.50 -

40
VOT (ms)

EEEEEEEEEEEEEEEEEE

80




ISk Ccr-0300

®

Je Q0300

&

Inter-speaker variabllity

Se.

40.

30.

20.

10.

60.

so.

40.

30.

ce.

10.

.
- ==
S
g ]
[}
7] ) .
' :
- -
' e =
- - L——-'
— ~= 2
T T T T T T 1
o 20 40 60 80 100 120 140 160
UOICED US UOICELESS VOT
JLt CONVERSATIONAL
-— F—J—- l-'ﬂ
[ |
LI |
- [ |
[ |
L |
- R P
]
[
-~ | ]
== e -
' '
! 1
! I T | T 1| T )
@ 20 49 €0 80 i10e 120 140 160

VOICED VS UVOICELESS VOT

RR3: CONVERSATIONAL

Ce»u0>300

-

*®

S K300

€0.

so.

40.

30'

10.

!
|
— ]
a2

LI
140

1
Ll I
20 40 69 80 100 120

UOICED US UOICELESS VOT
MS3: CONUVERSATIONAL

-
J
-

-
160

! ) I ] i
(] S

VOICED VS UOICELESS VOT
RR: CLEAR

! 1

100 150 200 2So 300 3Iso

(Chen, 1980)



Probability density
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Posterior probability of /b/
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Testing effects of environment variability

e Clayards et al. (2008) tested this prediction
e trained participants with different-variance Gaussians
 then tested categorization

Human performance
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Speech perception case study: summary

We covered a simple case of classification in a
continuous-signal setting: phoneme identification

We covered the principles of rational analysis that allow
us to construct an ideal observer model of the process

We used Bayesian inference to implement that model

We explored a theoretical prediction of the implemented
model and saw that experimental data confirmed the
prediction



