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Naturally occurring linguistic annotation

3

Arabic short vowels and consonant lengths bopomofo phonetic symbols 
(used in Taiwan for Mandarin)

Word boundary markers

I want to tell you a tale of a little girl

Iwanttotellyouataleofalittlegirl

(Arabic figure due to BoogaLoue bopomofo due to ㄏㄨㄤㄉㄧ ; both licensed under CC BY-SA)

https://en.wikipedia.org/wiki/User:%E3%84%8F%E3%84%A8%E3%84%A4%E3%84%89%E3%84%A7
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• 1960s: Brown Corpus of Standard American English 

(Kučera & Francis 1967) 
• Part-of-speech annotation added over next decade

• 1980s: large-scale language data, rise of statistical 
methods (Brown et al., 1990) led to many new projects

• First (morpho-)syntactic annotation project: Lancaster-
Oslo-Bergen corpus of English (Garside et al., 1987)

• Penn Treebank project ~late '80s (Marcus et al., 1993) 
• Brown Corpus, 1989 Wall Street Journal, spoken Switchboard

• There are now treebanks in dozens of languages!
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Penn Treebank conventions to know about
• Annotations are often "flatter" than often (theoretically) ideal
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Penn Treebank phrasal categories

7

1 ADJP     Adjective phrase 
2 ADVP     Adverb phrase 
3 NP       Noun phrase 
4 PP       Prepositional phrase 
5 S        Simple declarative clause 
6 SBAR     Clause introduced by subordinating 

conjunction or WH phrase7 SBARQ    Direct question introduced by wh-word or 
wh-phrase8 SINV     Declarative sentence with subject-auxiliary 
inversion9 SQ       Subconstituent of SBARQ excluding wh-word 
or wh-phrase10 VP       Verb phrase 

11 WHADVP   Wh-adverb phrase 
12 WHNP     Wh-noun phrase 
13 WHPP     Wh-prepositional phrase 
14 X        Constituent of unknown or uncertain 

category

(Marcus et al., 1993)

There are some other phrasal categories to annotate spoken transcripts, in the 
Switchboard part of the Penn Treebank, too



Penn Treebank tagset

8

1.  CC  Coordinating conjunction              25. TO  to  
2.  CD  Cardinal number                       26. UH  Interjection  
3.  DT  Determiner                            27. VB  Verb, base form  
4.  EX  Existential there                     28. VBD Verb, past tense  
5.  FW  Foreign word                          29. VBG Verb, gerund/present participle  
6.  IN  Preposition/subordinating conjunction 30. VBN Verb, past participle  
7.  JJ  Adjective                             31. VBP Verb, non-3rd ps. sing. present  
8.  JJR Adjective, comparative                32. VBZ Verb, 3rd ps. sing. present  
9.  JJS Adjective, superlative                33. WDT wh-determiner  
10. LS  List item marker                      34. WP  wh-pronoun  
11. MD  Modal                                 35. WP  Possessive wh-pronoun  
12. NN  Noun, singular or mass                36. WRB wh-adverb  
13. NNS Noun, plural                          37.  #  Pound sign  
14. NNP Proper noun, singular                 38.  $  Dollar sign  
15. NNPS Proper noun, plural                  39.  .  Sentence-final punctuation  
16. PDT Predeterminer                         40.  ,  Comma  
17. POS Possessive ending                     41.  :  Colon, semi-colon  
18. PRP Personal pronoun                      42.  (  Left bracket character  
19. PP  Possessive pronoun                    43.  )  Right bracket character  
20. RB  Adverb                                44.  "  Straight double quote  
21. RBR Adverb, comparative                   45.  `  Left open single quote  
22. RBS Adverb, superlative                   46.  "  Left open double quote  
23. RP  Particle                              47.  '  Right close single quote  
24. SYM Symbol (mathematical or scientific)   48.  "  Right close double quote

(Marcus et al., 1993)



A few more Penn Treebank tidbits

9



A few more Penn Treebank tidbits
• Spaces delimit word boundaries

9

S

INTJ

UH

Like

NP-SBJ

PRP

she

VP

MD

’d

VP

VB

eat

NP

NP

NN

ice

NN

cream

CC

and

NP

NNS

cookies

.

.

-DFL-

E S



A few more Penn Treebank tidbits
• Spaces delimit word boundaries

9

S

INTJ

UH

Like

NP-SBJ

PRP

she

VP

MD

’d

VP

VB

eat

NP

NP

NN

ice

NN

cream

CC

and

NP

NNS

cookies

.

.

-DFL-

E S

Incidentally: these are 
interjection & disfluency markers, 

used in annotating speech



A few more Penn Treebank tidbits
• Spaces delimit word boundaries

• All tree leaves (words and empty categories) are 
dominated by their part-of-speech tag alone

9

S

INTJ

UH

Like

NP-SBJ

PRP

she

VP

MD

’d

VP

VB

eat

NP

NP

NN

ice

NN

cream

CC

and

NP

NNS

cookies

.

.

-DFL-

E S

Incidentally: these are 
interjection & disfluency markers, 

used in annotating speech



A few more Penn Treebank tidbits
• Spaces delimit word boundaries

• All tree leaves (words and empty categories) are 
dominated by their part-of-speech tag alone

• You can treat Treebank annotations (mostly) as 
derivations trees from a context-free grammar, BUT best 
to treat the annotations as information about syntactic 
syntactic structure that we want grammars that will 
accurately recover 9
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Software for searching treebanks: Tregex

10

Tree-matching pattern

Tree node matching root 
node of pattern

(Levy & Andrew, 2006)
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Syntactic ambiguity
• Context-free grammars predict multiple derivations for 

many word strings
• This can capture many cases of AMBIGUITY in language

• But CFGs don't explain where our interpretation 
preferences come from

11https://languagelog.ldc.upenn.edu/nll/?p=17431
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Example from in-class survey

12
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Question Syntax People choosing

Who or what did this 
person want to visit?

Us 9%

Our garden 82%

Someone or something 
else 9%

Example from in-class survey
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Question Syntax People choosing
How does "Last Tuesday" relate to the rest 

of the sentence?

This was the time that the person's desire 
(to visit and learn about our garden) arose 18%

This was the person's preferred time both 
to visit and to look over our garden 73%

This was the person's preferred time to 
look over our garden 9%

Example from in-class survey

14
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Question Syntax People choosing
How does "Last Tuesday" relate to the rest 

of the sentence?

This was the time that the person's desire 
(to visit and learn about our garden) arose 18%

This was the person's preferred time both 
to visit and to look over our garden 73%

This was the person's preferred time to 
look over our garden 9%
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• 18% preferred an analysis differing in only 1 ambiguity

16

S

NP

NP

DT

A

NN

friend

PP

IN

of

NP

NP

NNP

Mary

POS

’s

NN

husband

VP

VBD

wanted

VP

TO

to

VP

VP/NP

VP/NP

V

visit

NP/NP

✏

CC

and

VP/NP

V

look

PP/NP

P

over

NP/NP

✏

NP

Det

our

N

garden

ADVP

ADJ

last

N

Tuesday

*recommended question: why 20, not 2×3×2×2=24? 



Preferred analysis for our example
• There are 20 trees available from these 4 ambiguities*
• Yet 66% of respondents chose this analysis:

• 18% preferred an analysis differing in only 1 ambiguity
• 18% preferred analysis differing in 2 ambiguities
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Preferred analysis for our example
• There are 20 trees available from these 4 ambiguities*
• Yet 66% of respondents chose this analysis:

• 18% preferred an analysis differing in only 1 ambiguity
• 18% preferred analysis differing in 2 ambiguities
• Theoretical challenge: what determines the "preferred" 

analysis, and how do we find it?
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1. Specify precisely the goals of the cognitive system 

2. Formalize model of the environment to which the 
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4. Derive predicted optimal behavior given 1–3 

5. Compare predictions with empirical data 

6. If necessary, iterate 1–5
18(Anderson, 1990)
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Rational analysis for syntactic processing
1. Specify precisely the goals of the cognitive system 

2. Formalize model of the environment to which the 
cognitive system is adapted 

3. Make minimal assumptions re: computational limitations 

4. Derive predicted optimal behavior given 1–3 

5. Compare predictions with empirical data 

6. If necessary, iterate 1–5
18(Anderson, 1990)

Efficiently analyze ("process") incoming linguistic input, and identify intended meaning

Statistics of the linguistic environment; knowledge of interlocutors and their goals:

Fast, near-normative Bayesian inference: P(Structure | Input) ∝ P(Input |Structure)P(Structure)

Use controlled, experimental case studies to investigate real-time human language understanding

 and P(Structure) P(Input |Structure)



Putting probabilities on structures
• Some syntactic structures are rarer than others 

• We want a model that will probabilistically score parts of a 
tree 

• One simple model for this is the PROBABILISTIC (or 
STOCHASTIC) CONTEXT-FREE GRAMMAR (PCFG or SCFG)
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Probabilistic Context-Free Grammars

A probabilistic context-free grammar (PCFG) consists of a tuple
(N,V , S ,R ,P) such that:

! N is a finite set of non-terminal symbols;

! V is a finite set of terminal symbols;

! S is the start symbol;

! R is a finite set of rules of the form X → α where X ∈ N and
α is a sequence of symbols drawn from N ∪ V ;

! P is a mapping from R into probabilities, such that for each
X ∈ N,

∑

[X→α]∈R

P(X → α) = 1

PCFG derivations and derivation trees are just like for CFGs. The
probability P(T ) of a derivation tree is simply the product of the
probabilities of each rule application.



Example PCFG
1 S →NP VP
0.8 NP →Det N
0.2 NP →NP PP
1 PP →P NP
1 VP →V

1 Det → the
0.5 N → dog
0.5 N → cat
1 P → near
1 V → growled
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0.2
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P(T) = 1× 0.2× 0.8× 1× 0.5× 1× 1× 0.8× 1× 0.5× 1× 1

= 0.032



PCFG review (2)

! We just learned how to calculate the probability of a tree

! The probability of a string w1···n is the sum of the probabilities of all
trees whose yield is w1···n

! The probability of a string prefix w1···i is the sum of the probabilities
of all trees whose yield begins with w1···i

! If we had the probabilities of two string prefixes w1···i−1 and w1···i ,
we could calculate the conditional probability P(wi |w1···i−1) as their
ratio:

P(wi |w1...i−1) =
P(w1...i )

P(w1...i−1)
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Inference over infinite tree sets

Consider the following noun-phrase grammar:

2
3 NP → Det N
1
3 NP → NP PP
1 PP → P NP

1 Det → the
2
3 N → dog
1
3 N → cat
1 P → near

Question: given a sentence starting with

the. . .

what is the probability that the next word is dog?
Intuitively, the answers to this question should be

P(dog|the) =
2

3

because the second word HAS to be either dog or cat.
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1
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! We “should” just enumerate the trees that cover the dog . . . , and
divide their total probability by that of the . . .

! . . . but there are infinitely many trees.
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You can think of a partial tree as marginalizing over all completions of
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Problem 2: there are still an infinite number of incomplete trees covering
a partial input.
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In general, these infinite tree sets arise due to left recursion in a
probabilistic grammar

A → B α B → A β

We can formulate a stochastic left-corner matrix of transitions between
categories:

PL =

A B . . . K

A 0.3 0.7 · · · 0
B 0.1 0.1 · · · 0.2
...

...
...

. . .
...

K 0.2 0.1 · · · 0.2

and solve for its closure RL = (I − PL)−1.

(Stolcke, 1995)



Generalizing the geometric series
1 ROOT → NP
2
3 NP → Det N
1
3 NP → NP PP
1 PP → P NP

1 Det → the
2
3 N → dog
1
3 N → cat
1 P → near

! The closure of our left-corner matrix is
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

! Refer to an entry (X ,Y ) in this matrix as R(X
∗

⇒L Y )

! Note that the 3
2 “bonus” accrued for left-recursion of NPs appears

in the (ROOT,NP) and (NP,NP) cells of the matrix

! We need to do the same with unary chains, constructing a
unary-closure matrix RU .



Efficient incremental parsing: the probabilistic Earley
algorithm

We can use the Earley algorithm (Earley, 1970) in a probabilistic
incarnation (Stolcke, 1995) to deal with these infinite tree sets.

The (slightly oversimplified) probabilistic Earley algorithm has two
fundamental types of operations:

! Prediction: if Y is a possible goal, and Y can lead to Z through a
left corner, choose a rule Z → α and set up α as a new sequence of
possible goals.

! Completion: if Y is a possible goal, Y can lead to Z through unary
rewrites, and we encounter a completed Z , absorb it and move on
to the next sub-goal in the sequence.



Efficient incremental parsing: the probabilistic Earley
algorithm

! Parsing consists of constructing a chart of states (items)

! A state has the following structure:

Goal symbol
Completed
subgoals

Remaining
subgoals

X→α◦β
p q

Forward
probability

Inside
probability

! The forward probability is the total probability of getting from the
root at the start of the sentence through to this state

! The inside probability is the “bottom-up” probability of the state
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Inference rules for probabilistic Earley:

! Prediction:

X→β ◦ Y γ
p q

a : R(Y
∗
⇒L Z ) b : Z → α

Z→◦α
abp b



Efficient incremental parsing: the probabilistic Earley
algorithm

Inference rules for probabilistic Earley:

! Prediction:

X→β ◦ Y γ
p q

a : R(Y
∗
⇒L Z ) b : Z → α

Z→◦α
abp b

! Completion:

X→β ◦ Y γ
p q

a : R(Y
∗
⇒U Z )

Z→α◦
b c

X→βY ◦ γ
acp acq
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Prefix probabilities from probabilistic Earley

! If you have just processed word wi , then the prefix probability of
w1...i can be obtained by summing all forward probabilities of items
that have the form X → αwi ◦ β

! In our example, we see:

P(the) = 1
P(the dog) = 2

3
P(the dog near) = 2

9
P(the dog near the) = 2

9

! Taking the ratios of these prefix probabilities can give us conditional
word probabilities



Probabilistic Earley as an “eager” algorithm

! From the inside probabilities of the states on the chart, the posterior
distribution on (incremental) trees can be directly calculated

! This posterior distribution is precisely the correct result of the
application of Bayes’ rule:

P(Tincremental|w1...i ) =
P(w1...i ,Tincremental)

P(w1...i )

! Hence, probabilistic Earley is also performing rational
disambiguation

! Hale (2001) called this the “eager” property of an incremental
parsing algorithm.



Probabilistic Earley algorithm: key ideas

! We want to use probabilistic grammars for both disambiguation and
calculating probability distributions over upcoming events

! Infinitely many trees can be constructed in polynomial time ( )
and space ( )

! The prefix probability of the string is calculated in the process

! By taking the log-ratio of two prefix probabilities, the surprisal of a
word in its context can be calculated



Probabilistic Earley algorithm: key ideas

! We want to use probabilistic grammars for both disambiguation and
calculating probability distributions over upcoming events

! Infinitely many trees can be constructed in polynomial time (O(n3))
and space ( )

! The prefix probability of the string is calculated in the process

! By taking the log-ratio of two prefix probabilities, the surprisal of a
word in its context can be calculated



Probabilistic Earley algorithm: key ideas

! We want to use probabilistic grammars for both disambiguation and
calculating probability distributions over upcoming events

! Infinitely many trees can be constructed in polynomial time (O(n3))
and space (O(n2))

! The prefix probability of the string is calculated in the process

! By taking the log-ratio of two prefix probabilities, the surprisal of a
word in its context can be calculated
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Probabilistic ambiguity resolution
• Let’s consider another case of ambiguity:

The complex houses married students and their families.

The prime number few.

• In-class exercise: develop a PCFG in which which the 
“garden-path” analysis is strongly disfavored



Incrementality:



Our more complex examples
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Ingredients for modeling human syntactic processing

• Estimate of statistics of the linguistic environment 

• Focus on predictive, incremental processing 

• An incremental probabilistic (Earley) parsing model



Human real-time syntactic processing
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Human real-time syntactic processing
• Let a word’s difficulty be its surprisal given its context:

• Captures the expectation intuition: the more we expect an 
event, the easier it is to process
• Brains are prediction engines!
      my brother came inside to…

      the children went outside to…

• Predictable words are read faster (Ehrlich & Rayner, 1981) and 
have distinctive EEG responses (Kutas & Hillyard 1980)

• Combine with probabilistic grammars to give grammatical 
expectations (Hale, 2001, NAACL; Levy, 2008, Cognition)

play

chat? wash? get warm?



The surprisal graph
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Garden-pathing and surprisal
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Garden-pathing and surprisal
• Here’s a local syntactic ambiguity

• Compare with:

When the dog scratched the vet and his new assistant removed the muzzle.

When the dog scratched, the vet and his new assistant removed the muzzle.

When the dog scratched its owner the vet and his new assistant removed the muzzle.

difficulty here 
(68ms/char)

easier 
(50ms/char)

(Frazier & Rayner, 1982)



A small PCFG for this sentence type

S → SBAR S 0.3 Conj → and 1 Adj → new 1
S → NP VP 0.7 Det → the 0.8 VP → V NP 0.5
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NP → Det Adj N 0.2 N → assistant 0.2 COMMA → , 1
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Preceding context can disambiguate
• “its owner” takes up the object slot of scratched
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NP absent 4.2
NP present 2



Sensitivity to verb argument structure
• A superficially similar example:

When the dog arrived the vet and his new assistant removed the muzzle.

(Staub, 2007)



Sensitivity to verb argument structure
• A superficially similar example:

When the dog arrived the vet and his new assistant removed the muzzle.

Easier here

(Staub, 2007)



Sensitivity to verb argument structure
• A superficially similar example:

When the dog arrived the vet and his new assistant removed the muzzle.

Easier here

(Staub, 2007)

But harder here!



Sensitivity to verb argument structure
• A superficially similar example:

When the dog arrived the vet and his new assistant removed the muzzle.

(c.f. When the dog scratched the vet and his new assistant removed the muzzle.)

Easier here

(Staub, 2007)

But harder here!
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VP → V NP 0.5 VP → Vtrans NP 0.45

VP → V 0.5
Replaced by

⇒

VP → Vtrans 0.05

V → scratched 0.25 VP → Vintrans 0.45

V → removed 0.25 VP → Vintrans NP 0.05

V → arrived 0.5 Vtrans → scratched 0.5

Vtrans → removed 0.5

Vintrans → arrived 1



Result

When the dog arrived the vet and his new assistant removed the muzzle.

When the dog scratched the vet and his new assistant removed the muzzle.

ambiguity onset ambiguity resolution

Transitivity-distinguishing PCFG
Condition Ambiguity onset Resolution
Intransitive (arrived) 2.11 3.20
Transitive (scratched) 0.44 8.04



Move to broad coverage

• Instead of the 
pedagogical grammar, 
a “broad-coverage” 
grammar from the 
parsed Brown corpus 
(11,984 rules) 

• Relative-frequency 
estimation of rule 
probabilities (“vanilla” 
PCFG) 

• (We’ll discuss these 
estimation techniques 
next class)
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more distant dependencies are harder to 
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Probability & extraposition
• But…
• …RC extraposition is relatively rare in English

 In situ: PVP(RC|NP)=0.06    Extraposed: PVP(RC|NP,PP)=0.003 
(estimated from the parsed Brown corpus)

• Alternative hypothesis: processing extraposed RCs is 
hard because they’re unexpected
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Experimental design
• We crossed RC expectation (low/high) with RC extraposition 

(extraposed/unextraposed)
• Example sentence: The chairman consulted…

• Our prediction is an interactive effect: high RC expectation (“only 
those”) will facilitate RC reading, but only in the extraposed 
condition

• We tested this in a self-paced reading study

94Levy, Fedorenko, Breen, & Gibson (2012)



Online processing results
• The difficulty pattern emerges within the RC’s first 4 words:
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Expectations versus memory
• Suppose you know that some event class X has to 

happen in the future, but you don’t know: 
1. When X is going to occur 
2. Which member of X it’s going to be 

• The things W you see before X can give you hints 
about (1) and (2) 
• If expectations facilitate processing, then seeing W 

should generally speed processing of X 
• But you also have to keep W in memory and retrieve it 

at X 
• This could slow processing at X



What happens in German final-verb processing?

• Variation in pre-verbal dependency structure also found 
in verb-final clauses such as in German
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Die Einsicht, dass der     Freund       
The insight,  that the.NOM friend 

dem     Kunden das     Auto aus Plastik 
the.DAT client the.ACC car  of  plastic

verkaufte, erheiterte die Anderen.
sold,      amused     the others.
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...daß  der Freund DEM Kunden das Auto verkaufte 

...that   the   friend    the  client    the   car       sold 

‘...that the friend sold the client a car...’

(Konieczny & Döring 2003)
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What happens in German final-verb processing?

...daß  der Freund DEM Kunden das Auto verkaufte 
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Locality: final verb read faster in DES condition 

Observed: final verb read faster in DEM condition
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Model results

Reading 
time (ms)

P(wi): word 
probability

Locality-based 
predictions

dem Kunden 

(dative)
555 8.38×10-8 slower

des Kunden 

(genitive)
793 6.35×10-8 faster

~30% greater expectation  
in dative condition

once again, wrong  
monotonicity
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103

S → SBAR S 0.3 Conj → and 1 Adj → new 1
S → NP VP 0.7 Det → the 0.8 VP → V NP 0.5
SBAR → COMPL S 0.3 Det → its 0.1 VP → V 0.5
SBAR → COMPL S COMMA 0.7 Det → his 0.1 V → scratched 0.25
COMPL → When 1 N → dog 0.2 V → removed 0.25
NP → Det N 0.6 N → vet 0.2 V → arrived 0.5
NP → Det Adj N 0.2 N → assistant 0.2 COMMA → , 1
NP → NP Conj NP 0.2 N → muzzle 0.2

N → owner 0.2
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