## Probabilistic context-free

 grammars, garden-pathing, and surprisalRoger Levy<br>9.19: Computational Psycholinguistics

## Corpus annotation

## Corpus annotation

- A corpus (pl. "corpora"): a collection of "naturalistic" text, or transcribed/recorded spoken or signed language


## Corpus annotation

- A CORPUS (pl. "corpora"): a collection of "naturalistic" text, or transcribed/recorded spoken or signed language
- It's useful to ANNOTATE the language's underlying structure


## Corpus annotation

- A CORPUS (pl. "corpora"): a collection of "naturalistic" text, or transcribed/recorded spoken or signed language
- It's useful to ANNOTATE the language's underlying structure
- An important SYNTACTICALLY ANNOTATED corpus: the Penn Treebank of English (Marcus et al., 1993)

```
    ( (S (PP (TO To) (NP (PRP her))) (NP-SBJ (NNS peanuts) (CC and)
(NNS emeralds)) (VP (MD would) (VP (VB have) (VP (VBN been) (NP-
PRD (RB just) (ADJP (RB so) (JJ much)) (NN blubber))))) (. .)))
```


## Corpus annotation

- A CORPUS (pl. "corpora"): a collection of "naturalistic" text, or transcribed/recorded spoken or signed language
- It's useful to ANNOTATE the language's underlying structure
- An important SYNTACTICALLY ANNOTATED corpus: the Penn Treebank of English (Marcus et al., 1993)

```
( (S (PP (TO TO) (NP (PRP her))) (NP-SBJ (NNS peanuts) (CC and) (NNS emeralds)) (VP (MD would) (VP (VB have) (VP (VBN been) (NPPRD (RB just) (ADJP (RB so) (JJ much)) (NN blubber))))) (. .)))
```



## Naturally occurring linguistic annotation

## Naturally occurring linguistic annotation

Arabic short vowels and consonant lengths


## Naturally occurring linguistic annotation

Arabic short vowels and consonant lengths

bopomofo phonetic symbols （used in Taiwan for Mandarin）

| 國音字母 ${ }^{\text {c }}$ |
| :---: |
|  |
| 加it |
|  |
|  |
|  |
| PTzt |
|  |
| $\chi_{\text {au＂}}$ 又 $_{\text {outut }}$ |
| N |
| lsis lif |
|  |
|  |
|  |
|  |

## Naturally occurring linguistic annotation

Arabic short vowels and consonant lengths

bopomofo phonetic symbols （used in Taiwan for Mandarin）

| 國音字母 ${ }_{\text {T }}$ |
| :---: |
|  |
|  |
|  |
|  |
|  |
| PTzatisa 4 s |
|  |
|  |
|  |
|  |
|  |
|  |
|  |
|  |

Iwanttotellyouataleofalittlegirl


I want to tell you a tale of a little girl

A brief \& selective history of modern corpus annotation

A brief \& selective history of modern corpus annotation

- In digital era, value of electronic readability of text \& corpus annotations became quickly apparent

A brief \& selective history of modern corpus annotation

- In digital era, value of electronic readability of text \& corpus annotations became quickly apparent
- 1960s: Brown Corpus of Standard American English (Kučera \& Francis 1967)
- Part-of-speech annotation added over next decade

A brief \& selective history of modern corpus annotation

- In digital era, value of electronic readability of text \& corpus annotations became quickly apparent
- 1960s: Brown Corpus of Standard American English (Kučera \& Francis 1967)
- Part-of-speech annotation added over next decade
- 1980s: large-scale language data, rise of statistical methods (Brown et al., 1990) led to many new projects

A brief \& selective history of modern corpus annotation

- In digital era, value of electronic readability of text \& corpus annotations became quickly apparent
- 1960s: Brown Corpus of Standard American English (Kučera \& Francis 1967)
- Part-of-speech annotation added over next decade
- 1980s: large-scale language data, rise of statistical methods (Brown et al., 1990) led to many new projects
- First (morpho-)syntactic annotation project: Lancaster-Oslo-Bergen corpus of English (Garside et al., 1987)

A brief \& selective history of modern corpus annotation

- In digital era, value of electronic readability of text \& corpus annotations became quickly apparent
- 1960s: Brown Corpus of Standard American English (Kučera \& Francis 1967)
- Part-of-speech annotation added over next decade
- 1980s: large-scale language data, rise of statistical methods (Brown et al., 1990) led to many new projects
- First (morpho-)syntactic annotation project: Lancaster-Oslo-Bergen corpus of English (Garside et al., 1987)
- Penn Treebank project ~late '80s (Marcus et al., 1993)
- Brown Corpus, 1989 Wall Street Journal, spoken Switchboard

A brief \& selective history of modern corpus annotation

- In digital era, value of electronic readability of text \& corpus annotations became quickly apparent
- 1960s: Brown Corpus of Standard American English (Kučera \& Francis 1967)
- Part-of-speech annotation added over next decade
- 1980s: large-scale language data, rise of statistical methods (Brown et al., 1990) led to many new projects
- First (morpho-)syntactic annotation project: Lancaster-Oslo-Bergen corpus of English (Garside et al., 1987)
- Penn Treebank project ~late '80s (Marcus et al., 1993)
- Brown Corpus, 1989 Wall Street Journal, spoken Switchboard
- There are now treebanks in dozens of languages!


## Penn Treebank conventions to know about

- Not all nodes of the tree dominate any words at all: there are empty categories!

The 1987 statute Mrs. Yeargin violated was designed to enforce provisions of South Carolina's school-improvement laws

## Penn Treebank conventions to know about

- Not all nodes of the tree dominate any words at all: there are empty categories!

The 1987 statute Mrs. Yeargin violated was designed to enforce provisions of South Carolina's school-improvement laws


## Penn Treebank conventions to know about

- Not all nodes of the tree dominate any words at all: there are empty categories!

The 1987 statute Mrs. Yeargin violated was designed to enforce provisions of South Carolina's school-improvement laws


## Penn Treebank conventions to know about

- Not all nodes of the tree dominate any words at all: there are empty categories!

The 1987 statute Mrs. Yeargin violated was designed to enforce provisions of South Carolina's school-improvement laws


## Penn Treebank conventions to know about

- Not all nodes of the tree dominate any words at all: there are empty categories!

The 1987 statute Mrs. Yeargin violated was designed to enforce provisions of South Carolina's school-improvement laws


## Penn Treebank conventions to know about

- Not all nodes of the tree dominate any words at all: there are empty categories!

The 1987 statute Mrs. Yeargin violated was designed to enforce provisions of South Carolina's school-improvement laws


## Penn Treebank conventions to know about

- Not all nodes of the tree dominate any words at all: there are empty categories!

The 1987 statute Mrs. Yeargin violated was designed to enforce provisions of South Carolina's school-improvement laws


## Penn Treebank conventions to know about

- Not all nodes of the tree dominate any words at all: there are empty categories!

The 1987 statute Mrs. Yeargin violated was designed to enforce provisions of South Carolina's school-improvement laws


## Penn Treebank conventions to know about

- Annotations are often "flatter" than often (theoretically) ideal



## Penn Treebank phrasal categories

| 1 | ADJP | Adjective phrase |
| :---: | :---: | :--- |
| 2 | ADVP | Adverb phrase |
| 3 | NP | Noun phrase |
| 4 | PP | Prepositional phrase |
| 5 | S | Simple declarative clause |
| 6 | SBAR | Clause introduced by subordinating |
| 7 | SBARQ | Direct question introduced by wh-word or |
| 8 | SINV | Declarative sentence with subject-auxiliary |
| 9 | SQ | Subconstituent of SBARQ excluding wh-word |
| 10 | VP | Verb phrase |
| 11 | WHADVP | Wh-adverb phrase |
| 12 | WHNP | Wh-noun phrase |
| 13 | WHPP | Wh-prepositional phrase |
| 14 | X | Constituent of unknown or uncertain |

There are some other phrasal categories to annotate spoken transcripts, in the Switchboard part of the Penn Treebank, too

## Penn Treebank tagset

1. CC Coordinating conjunction
2. CD Cardinal number
3. DT Determiner
4. EX Existential there
5. FW FPreign word
6. IN Preposition/subordinating conjunctio
7. JJ Adjective
8. JJR Adjective, comparative
9. JJS Adjective, superlative
10. LS List item marker
11. MD Modal
12. NN Noun, singular or mass
13. NNS Noun, plural
14. NNP Proper noun, singular
15. NNPS Proper noun, plural
16. PDT Predeterminer
17. POS Possessive ending
18. PRP Personal pronoun
19. PP Possessive pronoun
20. RB Adverb
21. RBR Adverb, comparative
22. RBS Adverb, superlative
23. RP Particle
24. SYM Symbol (mathematical or scientific)
25. TO to
26. UH Interjection
27. VB Verb, base form
28. VBD Verb, past tense
29. VBG Verb, gerund/present participle
30. VBN Verb, past participle
31. VBP Verb, non-3rd ps. sing. present
32. VBZ Verb, 3rd ps. sing. present
33. WDT wh-determiner
34. WP wh-pronoun
35. WP Possessive wh-pronoun
36. WRB wh-adverb
37. \# Pound sign
38. \$ Dollar sign
39. . Sentence-final punctuation
40. , Comma
41. : Colon, semi-colon
42. ( Left bracket character
43. ) Right bracket character
44. " Straight double quote
45. ' Left open single quote
46. " Left open double quote
47. ' Right close single quote
48. " Right close double quote

## A few more Penn Treebank tidbits

## A few more Penn Treebank tidbits

- Spaces delimit word boundaries



## A few more Penn Treebank tidbits

- Spaces delimit word boundaries

S
Incidentally: these are interjection \& disfluency markers,


## A few more Penn Treebank tidbits

- Spaces delimit word boundaries

S
Incidentally: these are
interjection \& disfluency markers,


- All tree leaves (words and empty categories) are dominated by their part-of-speech tag alone


## A few more Penn Treebank tidbits

- Spaces delimit word boundaries

S
Incidentally: these are
interjection \& disfluency markers,


- All tree leaves (words and empty categories) are dominated by their part-of-speech tag alone
- You can treat Treebank annotations (mostly) as derivations trees from a context-free grammar, BUT best to treat the annotations as information about syntactic syntactic structure that we want grammars that will accurately recover


## Software for searching treebanks: Tregex



## Syntactic ambiguity

## Syntactic ambiguity

- Context-free grammars predict multiple derivations for many word strings


## Syntactic ambiguity

- Context-free grammars predict multiple derivations for many word strings
- This can capture many cases of AMBIGUITY in language


## Syntactic ambiguity

- Context-free grammars predict multiple derivations for many word strings
- This can capture many cases of AMBIGUITY in language

Brennan objects to use of waterboarding in CIA confirmation hearing

## Syntactic ambiguity

- Context-free grammars predict multiple derivations for many word strings
- This can capture many cases of AMBIGUITY in language

Brennan objects to use of waterboarding in CIA confirmation hearing


## Syntactic ambiguity

- Context-free grammars predict multiple derivations for many word strings
- This can capture many cases of AMBIGUITY in language

Brennan objects to use of waterboarding in CIA confirmation hearing


## Syntactic ambiguity

- Context-free grammars predict multiple derivations for many word strings
- This can capture many cases of AMBIGUITY in language

Brennan objects to use of waterboarding in CIA confirmation hearing


- But CFGs don't explain where our interpretation preferences come from


## Example from in-class survey

A friend of Mary's husband wanted to visit and look over our garden last Tuesday.

## Example from in-class survey

A friend of Mary's husband wanted to visit and look over our garden last Tuesday.

## Question

Syntax

Proportion of choices

Who wanted to visit and see our garden?

The husband of one of Mary's friends


## Example from in-class survey

A friend of Mary's husband wanted to visit and look over our garden last Tuesday.

## Question

Syntax

Proportion of choices

Who wanted to visit and see our garden?

The husband of one of Mary's friends


0\%

Someone who is friends with
Mary's husband


0\%

## Example from in-class survey

A friend of Mary's husband wanted to visit and look over our garden last Tuesday.

Question
Who or what did this person want to visit?

Us

Our garden

Someone or something else

Syntax
People choosing


## Example from in-class survey

A friend of Mary's husband wanted to visit and look over our garden last Tuesday.

Syntax
People choosing


## Example from in-class survey

A friend of Mary's husband wanted to visit and look over our garden last Tuesday.

## Question

How does "Last Tuesday" relate to the rest of the sentence?

This was the time that the person's desire (to visit and learn about our garden) arose

This was the person's preferred time both to visit and to look over our garden

This was the person's preferred time to look over our garden

Syntax
People choosing


## Example from in-class survey

A friend of Mary's husband wanted to visit and look over our garden last Tuesday.

## Question

How does "Last Tuesday" relate to the rest of the sentence?

This was the time that the person's desire (to visit and learn about our garden) arose

This was the person's preferred time both to visit and to look over our garden

This was the person's preferred time to look over our garden

Syntax
People choosing


## Example from in-class survey

A friend of Mary's husband wanted to visit and look over our garden last Tuesday.

## Question

What is meant by "look over our garden"?

From one side of the garden, look over to what's on the other side of the garden

Look our garden over

Syntax
People choosing


Something else

## Example from in-class survey

A friend of Mary's husband wanted to visit and look over our garden last Tuesday.

## Question

What is meant by "look over our garden"?

From one side of the garden, look over to what's on the other side of the garden

Look our garden over

Syntax
People choosing


Something else

## Preferred analysis for our example

## Preferred analysis for our example

- There are 20 trees available from these 4 ambiguities*


## Preferred analysis for our example

- There are 20 trees available from these 4 ambiguities*
- Yet $66 \%$ of respondents chose this analysis:



## Preferred analysis for our example

- There are 20 trees available from these 4 ambiguities*
- Yet $66 \%$ of respondents chose this analysis:

- $18 \%$ preferred an analysis differing in only 1 ambiguity


## Preferred analysis for our example

- There are 20 trees available from these 4 ambiguities*
- Yet $66 \%$ of respondents chose this analysis:

- $18 \%$ preferred an analysis differing in only 1 ambiguity
- $18 \%$ preferred analysis differing in 2 ambiguities


## Preferred analysis for our example

- There are 20 trees available from these 4 ambiguities*
- Yet $66 \%$ of respondents chose this analysis:

- $18 \%$ preferred an analysis differing in only 1 ambiguity
- 18\% preferred analysis differing in 2 ambiguities
- Theoretical challenge: what determines the "preferred" analysis, and how do we find it?


## Expectations in incremental comprehension



## Expectations in incremental comprehension



- Syntactic:

Jamie was clearly intimidated...

## Expectations in incremental comprehension



- Syntactic:

Jamie was clearly intimidated... by [source]

## Expectations in incremental comprehension



- Syntactic:

Jamie was clearly intimidated... by [source]

- Phonological knowledge:

Terry ate an...

## Expectations in incremental comprehension



- Syntactic:

Jamie was clearly intimidated... by [source]

- Phonological knowledge:

Terry ate an ... apple/orange/ice cream cone

## Expectations in incremental comprehension



- Syntactic:

Jamie was clearly intimidated... by [source]

- Phonological knowledge:

Terry ate an... apple/orange/ice cream cone
Terry ate a...

## Expectations in incremental comprehension



- Syntactic:

Jamie was clearly intimidated... by [source]

- Phonological knowledge:

Terry ate an ... apple/orange/ice cream cone
Terry ate a... nectarine/banana/sandwich

## Expectations in incremental comprehension



- Syntactic:

Jamie was clearly intimidated... by [source]

- Phonological knowledge:

Terry ate an ... apple/orange/ice cream cone
Terry ate a... nectarine/banana/sandwich

- Semantic \& situational knowledge:

The children went outside to...

## Expectations in incremental comprehension



- Syntactic:

Jamie was clearly intimidated... by [source]

- Phonological knowledge:

Terry ate an ... apple/orange/ice cream cone
Terry ate a... nectarine/banana/sandwich

- Semantic \& situational knowledge:

The children went outside to...play

## Expectations in incremental comprehension



- Syntactic:

Jamie was clearly intimidated... by [source]

- Phonological knowledge:

Terry ate an ... apple/orange/ice cream cone
Terry ate a... nectarine/banana/sandwich

- Semantic \& situational knowledge:

The children went outside to...play
The squirrel stored some nuts in the...

## Expectations in incremental comprehension



- Syntactic:

Jamie was clearly intimidated... by [source]

- Phonological knowledge:

Terry ate an ... apple/orange/ice cream cone
Terry ate a... nectarine/banana/sandwich

- Semantic \& situational knowledge:

The children went outside to...play
The squirrel stored some nuts in the ...statue

## Expectations in incremental comprehension



- Syntactic:

Jamie was clearly intimidated... by [source]

- Phonological knowledge:

Terry ate an... apple/orange/ice cream cone
Terry ate a... nectarine/banana/sandwich

- Semantic \& situational knowledge:

The children went outside to...play
The squirrel stored some nuts in the ..ssure

## Rational analysis for syntactic processing

1. Specify precisely the goals of the cognitive system
2. Formalize model of the environment to which the cognitive system is adapted
3. Make minimal assumptions re: computational limitations
4. Derive predicted optimal behavior given 1-3
5. Compare predictions with empirical data
6. If necessary, iterate $1-5$

## Rational analysis for syntactic processing

1. Specify precisely the goals of the cognitive system

Efficiently analyze ("process") incoming linguistic input, and identify intended meaning
2. Formalize model of the environment to which the cognitive system is adapted
3. Make minimal assumptions re: computational limitations
4. Derive predicted optimal behavior given 1-3
5. Compare predictions with empirical data
6. If necessary, iterate $1-5$

## Rational analysis for syntactic processing

1. Specify precisely the goals of the cognitive system

Efficiently analyze ("process") incoming linguistic input, and identify intended meaning
2. Formalize model of the environment to which the cognitive system is adapted
Statistics of the linguistic environment; knowledge of interlocutors and their goals:
$P$ (Structure) and $P$ (Input $\mid$ Structure)
3. Make minimal assumptions re: computational limitations
4. Derive predicted optimal behavior given 1-3
5. Compare predictions with empirical data
6. If necessary, iterate $1-5$

## Rational analysis for syntactic processing

1. Specify precisely the goals of the cognitive system

Efficiently analyze ("process") incoming linguistic input, and identify intended meaning
2. Formalize model of the environment to which the cognitive system is adapted
Statistics of the linguistic environment; knowledge of interlocutors and their goals:
$P$ (Structure) and $P$ (Input $\mid$ Structure)
3. Make minimal assumptions re: computational limitations

Fast, near-normative Bayesian inference: $P($ Structure $\mid$ Input $) \propto P($ Input $\mid$ Structure $) P($ Structure $)$
4. Derive predicted optimal behavior given 1-3
5. Compare predictions with empirical data
6. If necessary, iterate $1-5$

## Rational analysis for syntactic processing

1. Specify precisely the goals of the cognitive system

Efficiently analyze ("process") incoming linguistic input, and identify intended meaning
2. Formalize model of the environment to which the cognitive system is adapted
Statistics of the linguistic environment; knowledge of interlocutors and their goals:
$P$ (Structure) and $P$ (Input $\mid$ Structure)
3. Make minimal assumptions re: computational limitations

Fast, near-normative Bayesian inference: $P($ Structure $\mid$ Input $) \propto P($ Input $\mid$ Structure $) P($ Structure $)$
4. Derive predicted optimal behavior given 1-3
5. Compare predictions with empirical data
6. If necessary, iterate $1-5$

## Rational analysis for syntactic processing

1. Specify precisely the goals of the cognitive system

Efficiently analyze ("process") incoming linguistic input, and identify intended meaning
2. Formalize model of the environment to which the cognitive system is adapted
Statistics of the linguistic environment; knowledge of interlocutors and their goals:
$P($ Structure $)$ and $P($ Input $\mid$ Structure $)$
3. Make minimal assumptions re: computational limitations

Fast, near-normative Bayesian inference: $P($ Structure $\mid$ Input $) \propto P($ Input $\mid$ Structure $) P($ Structure $)$
4. Derive predicted optimal behavior given 1-3
5. Compare predictions with empirical data

Use controlled, experimental case studies to investigate real-time human language understanding
6. If necessary, iterate $1-5$

## Putting probabilities on structures

- Some syntactic structures are rarer than others

- We want a model that will probabilistically score parts of a tree
- One simple model for this is the PROBABILISTIC (or STOCHASTIC) CONTEXT-FREE GRAMMAR (PCFG or SCFG)


## Putting probabilities on structures

- Some syntactic structures are rarer than others

- We want a model that will probabilistically score parts of a tree
- One simple model for this is the PROBABILISTIC (or STOCHASTIC) CONTEXT-FREE GRAMMAR (PCFG or SCFG)


## Probabilistic Context-Free Grammars

A probabilistic context-free grammar (PCFG) consists of a tuple ( $N, V, S, R, P$ ) such that:

- $N$ is a finite set of non-terminal symbols;
- $V$ is a finite set of terminal symbols;
- $S$ is the start symbol;
- $R$ is a finite set of rules of the form $X \rightarrow \alpha$ where $X \in N$ and $\alpha$ is a sequence of symbols drawn from $N \cup V$;
- $P$ is a mapping from $R$ into probabilities, such that for each $X \in N$,

$$
\sum_{[X \rightarrow \alpha] \in R} P(X \rightarrow \alpha)=1
$$

PCFG derivations and derivation trees are just like for CFGs. The probability $P(T)$ of a derivation tree is simply the product of the probabilities of each rule application.

## Example PCFG

$$
\begin{aligned}
& 1 \quad \mathrm{~S} \rightarrow \mathrm{NP} \text { VP } \\
& 1 \text { Det } \rightarrow \text { the } \\
& 0.8 \mathrm{NP} \rightarrow \text { Det } \mathrm{N} \\
& 0.2 \mathrm{NP} \rightarrow \mathrm{NP} \mathrm{PP} \\
& 1 \quad \mathrm{PP} \rightarrow \mathrm{PNP} \\
& 1 \quad \mathrm{VP} \rightarrow \mathrm{~V} \\
& 0.5 \mathrm{~N} \rightarrow \operatorname{dog} \\
& 0.5 \mathrm{~N} \rightarrow \text { cat } \\
& 1 \quad \mathrm{P} \rightarrow \text { near } \\
& 1 \quad \mathrm{~V} \rightarrow \text { growled } \\
& \mathrm{P}(\mathrm{~T})=1 \times 0.2 \times 0.8 \times 1 \times 0.5 \times 1 \times 1 \times 0.8 \times 1 \times 0.5 \times 1 \times 1 \\
& =0.032
\end{aligned}
$$

## PCFG review (2)

- We just learned how to calculate the probability of a tree
- The probability of a string $w_{1 \ldots n}$ is the sum of the probabilities of all trees whose yield is $w_{1} \ldots n$
- The probability of a string prefix $w_{1} \ldots i$ is the sum of the probabilities of all trees whose yield begins with $w_{1} \ldots$ i
- If we had the probabilities of two string prefixes $w_{1} \ldots i-1$ and $w_{1} \ldots i$, we could calculate the conditional probability $P\left(w_{i} \mid w_{1 \ldots i-1}\right)$ as their ratio:

$$
P\left(w_{i} \mid w_{1 \ldots i-1}\right)=\frac{P\left(w_{1} \ldots i\right)}{P\left(w_{1 \ldots i-1}\right)}
$$

## Inference over infinite tree sets

Consider the following noun-phrase grammar:

$$
\begin{array}{ll}
\frac{2}{3} & \text { NP } \rightarrow \text { Det N } \\
\frac{1}{3} & \text { NP } \rightarrow \text { NP PP } \\
1 & P P \rightarrow P \text { NP }
\end{array}
$$

| 1 | Det $\rightarrow$ the |
| :--- | :--- |
| $\frac{2}{3}$ | N |
| $\frac{1}{3}$ dog |  |
| $\frac{1}{3}$ | N |
| 1 | $\rightarrow$ cat |
| 1 | P |

## Inference over infinite tree sets

Consider the following noun-phrase grammar:


1 Det $\rightarrow$ the
$\begin{array}{lll}\frac{2}{3} & \mathrm{~N} & \rightarrow \text { dog } \\ \frac{1}{3} & \mathrm{~N} & \rightarrow \text { cat } \\ 1 & \mathrm{P} & \rightarrow \text { near }\end{array}$
Question: given a sentence starting with the...
what is the probability that the next word is dog?

## Inference over infinite tree sets

Consider the following noun-phrase grammar:

|  |  | 1 |
| :--- | :--- | :--- |
| $\frac{2}{3}$ | Det $\rightarrow$ the |  |
| $\frac{2}{3}$ | Det N | $\frac{2}{3}$ |
| N | N dog |  |
| $\frac{1}{3}$ | $\mathrm{NP} \rightarrow$ NP PP | $\frac{1}{3}$ |
| N | N cat |  |
| 1 | $\mathrm{PP} \rightarrow \mathrm{P} \mathrm{NP}$ | 1 |

Question: given a sentence starting with the. . .
what is the probability that the next word is dog? Intuitively, the answers to this question should be

$$
P(\operatorname{dog} \mid \text { the })=\frac{2}{3}
$$

## Inference over infinite tree sets

Consider the following noun-phrase grammar:


Question: given a sentence starting with the. . .
what is the probability that the next word is dog? Intuitively, the answers to this question should be

$$
P(\operatorname{dog} \mid \text { the })=\frac{2}{3}
$$

because the second word HAS to be either dog or cat.

## Inference over infinite tree sets (2)

| $\frac{2}{3}$ | $\mathrm{NP} \rightarrow$ Det N |
| :--- | :--- |
| $\frac{1}{3}$ | $\mathrm{NP} \rightarrow \mathrm{NP} \mathrm{PP}$ |
| 1 | $\mathrm{PP} \rightarrow \mathrm{P} \mathrm{NP}$ |


| 1 | Det |
| :---: | :---: |
|  | $\mathrm{N} \rightarrow$ dog |
|  | $\mathrm{N} \rightarrow$ cat |
|  | P $\rightarrow$ |

- We "should" just enumerate the trees that cover the dog ...,


## Inference over infinite tree sets (2)

$$
\begin{array}{ll}
\frac{2}{3} & N P \rightarrow \text { Det N } \\
\frac{1}{3} & N P \rightarrow \text { NP PP } \\
1 & P P \rightarrow P N P
\end{array}
$$

| 1 | Det $\rightarrow$ the |
| :---: | :---: |
| $\frac{2}{3}$ | $\mathrm{N} \rightarrow$ dog |
| $\frac{1}{3}$ | $\mathrm{N} \rightarrow$ cat |
| 1 | $\mathrm{P} \rightarrow$ near |

- We "should" just enumerate the trees that cover the dog..., and divide their total probability by that of the...


## Inference over infinite tree sets (2)

$$
\begin{array}{ll}
\frac{2}{3} & \text { NP } \rightarrow \text { Det N } \\
\frac{1}{3} & \text { NP } \rightarrow \text { NP PP } \\
1 & P P \rightarrow P N P
\end{array}
$$



- We "should" just enumerate the trees that cover the dog..., and divide their total probability by that of the ...
- . . . but there are infinitely many trees.


## Inference over infinite tree sets (2)

| $\frac{2}{3}$ | NP $\rightarrow$ Det N |
| :--- | :--- |
| $\frac{1}{3}$ | NP $\rightarrow$ NP PP |
| 1 | $\mathrm{PP} \rightarrow \mathrm{P} \mathrm{NP}$ |


| 1 | Det $\rightarrow$ the |
| :---: | :---: |
| $\frac{2}{3}$ | $\mathrm{N} \rightarrow$ dog |
| $\frac{1}{3}$ | $\mathrm{N} \rightarrow$ cat |
| 1 | $\rightarrow$ near |

- We "should" just enumerate the trees that cover the dog..., and divide their total probability by that of the...
- . . . but there are infinitely many trees.


|  |  | 1 |
| :--- | :--- | :--- |
| $\frac{2}{3}$ | NP $\rightarrow$ Det N $\rightarrow$ the |  |
| $\frac{1}{3}$ | NP $\rightarrow$ NP PP | $\frac{2}{3}$ |
| $\mathrm{~N} \rightarrow$ dog |  |  |
| 1 | $\mathrm{PP} \rightarrow \mathrm{P} \mathrm{NP}$ | $\frac{1}{3}$ |
| $\mathrm{~N} \rightarrow$ cat |  |  |
|  | 1 | $\mathrm{P} \rightarrow$ near |

You can think of a partial tree as marginalizing over all completions of the partial tree.
It has a corresponding marginal probability in the PCFG.

$\frac{4}{9}$


|  |  | 1 |
| :--- | :--- | :--- |
| $\frac{2}{3}$ | NP $\rightarrow$ Det N $\rightarrow$ the |  |
| $\frac{1}{3}$ | NP $\rightarrow$ NP PP | $\frac{2}{3}$ |
| $\mathrm{~N} \rightarrow$ dog |  |  |
| 1 | $\mathrm{PP} \rightarrow \mathrm{P} \mathrm{NP}$ | $\frac{1}{3}$ |
| $\mathrm{~N} \rightarrow$ cat |  |  |
|  | 1 | $\mathrm{P} \rightarrow$ near |

You can think of a partial tree as marginalizing over all completions of the partial tree.
It has a corresponding marginal probability in the PCFG.


the cat
$\frac{4}{81}$

$$
\begin{array}{llll} 
& & 1 & \text { Det } \rightarrow \text { the } \\
\frac{2}{3} & \mathrm{NP} \rightarrow \text { Det N } & \frac{2}{3} & \mathrm{~N} \rightarrow \text { dog } \\
\frac{1}{3} & \mathrm{NP} \rightarrow \text { NP PP } & \frac{1}{3} & \mathrm{~N} \rightarrow \text { cat } \\
1 & \mathrm{PP} \rightarrow \mathrm{P} \mathrm{NP} & 1 & \mathrm{P} \rightarrow \text { near }
\end{array}
$$

You can think of a partial tree as marginalizing over all completions of the partial tree.
It has a corresponding marginal probability in the PCFG.


the cat
$\frac{4}{81}$

Problem 2: there are still an infinite number of incomplete trees covering a partial input.

$\frac{4}{9}$
$\frac{4}{27}$
$\frac{4}{81}$
$\frac{4}{243}$

Problem 2: there are still an infinite number of incomplete trees covering a partial input.

$\frac{4}{9}$

$$
\frac{4}{27}
$$


$\frac{4}{81}$
BUT! These tree probabilities form a geometric series:

$$
P(\text { the } \operatorname{dog} \ldots)=\frac{4}{9}+\frac{4}{27}+\frac{4}{81}+\frac{4}{243}+\cdots
$$

Problem 2: there are still an infinite number of incomplete trees covering a partial input.

$\frac{4}{9}$

$$
\frac{4}{27}
$$

$\frac{4}{81}$
$\frac{4}{243}$
BUT! These tree probabilities form a geometric series:

$$
\begin{aligned}
P(\text { the } \operatorname{dog} \ldots) & =\frac{4}{9}+\frac{4}{27}+\frac{4}{81}+\frac{4}{243}+\cdots \\
& =\frac{4}{9} \sum_{i=0}^{\infty}\left(\frac{1}{3}\right)^{i}
\end{aligned}
$$

Problem 2: there are still an infinite number of incomplete trees covering a partial input.

$\frac{4}{9}$

$$
\frac{4}{27}
$$


$\frac{4}{81}$
$\frac{4}{243}$
BUT! These tree probabilities form a geometric series:

$$
\begin{aligned}
P(\text { the } \operatorname{dog} \ldots) & =\frac{4}{9}+\frac{4}{27}+\frac{4}{81}+\frac{4}{243}+\cdots \\
& =\frac{4}{9} \sum_{i=0}^{\infty}\left(\frac{1}{3}\right)^{i} \\
& =\frac{2}{3}
\end{aligned}
$$

Problem 2: there are still an infinite number of incomplete trees covering a partial input.

$\frac{4}{9}$

$$
\frac{4}{27}
$$


$\frac{4}{81}$
$\frac{4}{243}$
BUT! These tree probabilities form a geometric series:

$$
\begin{aligned}
P(\text { the } \operatorname{dog} \ldots) & =\frac{4}{9}+\frac{4}{27}+\frac{4}{81}+\frac{4}{243}+\cdots \\
& =\frac{4}{9} \sum_{i=0}^{\infty}\left(\frac{1}{3}\right)^{i} \\
& =\frac{2}{3}
\end{aligned}
$$

... which matches the original rule probability

$$
\frac{2}{3} N \rightarrow d o g
$$

## Generalizing the geometric series induced by rule recursion

In general, these infinite tree sets arise due to left recursion in a probabilistic grammar

$$
A \rightarrow B \alpha \quad B \rightarrow A \beta
$$

(Stolcke, 1995)

## Generalizing the geometric series induced by rule recursion

In general, these infinite tree sets arise due to left recursion in a probabilistic grammar

$$
A \rightarrow B \alpha \quad B \rightarrow A \beta
$$

We can formulate a stochastic left-corner matrix of transitions between categories:

$$
P_{L}=\begin{array}{c|cccc} 
& A & B & \cdots & K \\
\cline { 2 - 5 } & & & & \\
\hline & 0.3 & 0.7 & \cdots & 0 \\
B & 0.1 & 0.1 & \cdots & 0.2 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
K & 0.2 & 0.1 & \cdots & 0.2
\end{array}
$$

(Stolcke, 1995)

## Generalizing the geometric series induced by rule recursion

In general, these infinite tree sets arise due to left recursion in a probabilistic grammar

$$
A \rightarrow B \alpha \quad B \rightarrow A \beta
$$

We can formulate a stochastic left-corner matrix of transitions between categories:

$$
P_{L}=\begin{array}{c|cccc} 
& A & B & \cdots & K \\
\cline { 2 - 5 } & & & & \\
\hline & 0.3 & 0.7 & \cdots & 0 \\
B & 0.1 & 0.1 & \cdots & 0.2 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
K & 0.2 & 0.1 & \cdots & 0.2
\end{array}
$$

and solve for its closure $R_{L}=\left(I-P_{L}\right)^{-1}$.
(Stolcke, 1995)

## Generalizing the geometric series

$$
\begin{array}{lll}
1 & \mathrm{ROOT} & \rightarrow \text { NP } \\
\frac{2}{3} & \mathrm{NP} & \rightarrow \text { Det N } \\
\frac{1}{3} & \mathrm{NP} & \rightarrow \text { NP PP } \\
1 & \mathrm{PP} & \rightarrow \mathrm{P} \mathrm{NP}
\end{array}
$$

- The closure of our left-corner matrix is

$$
\left.R_{L}=\begin{array}{cccccc} 
\\
\begin{array}{l}
\text { ROOT }
\end{array} \\
\begin{array}{l}
\text { ROOT } \\
\text { NP } \\
\text { PP } \\
\text { Det } \\
\text { N } \\
\text { P }
\end{array} \\
\\
0 & \frac{3}{2} & 0 & \text { PP } & \text { N } & \text { P } \\
0 & \frac{3}{2} & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

## Generalizing the geometric series

| 1 | ROOT | $\rightarrow$ NP |
| :--- | :--- | :--- |
| $\frac{2}{3}$ | NP | $\rightarrow$ Det N |
| $\frac{1}{3}$ | NP | $\rightarrow$ NP PP |
| 1 | PP | $\rightarrow$ P NP |



- The closure of our left-corner matrix is

$$
\left.R_{L}=\begin{array}{cccccc} 
\\
\begin{array}{l}
\text { ROOT }
\end{array} \\
\begin{array}{l}
\text { ROOT } \\
\text { NP } \\
\text { PP } \\
\text { Det } \\
\text { N } \\
\text { P }
\end{array} \\
\\
0 & \frac{3}{2} & 0 & \text { PP } & \text { Det } & \text { P } \\
0 & & \text { P } \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

- Refer to an entry $(X, Y)$ in this matrix as $R(X \stackrel{*}{\Rightarrow} L Y)$


## Generalizing the geometric series

$$
\begin{array}{lll}
1 & \text { ROOT } & \rightarrow \text { NP } \\
\frac{2}{3} & \text { NP } & \rightarrow \text { Det N } \\
\frac{1}{3} & \text { NP } & \rightarrow \text { NP PP } \\
1 & \mathrm{PP} & \rightarrow \mathrm{P} \mathrm{NP}
\end{array}
$$

- The closure of our left-corner matrix is

$$
R_{L}=\begin{gathered}
\text { ROOT } \\
\text { ROOT } \\
\text { NP } \\
\text { NP } \\
\text { PP } \\
\text { Det } \\
\text { N } \\
\text { P }
\end{gathered}\left(\begin{array}{ccccc}
1 & \frac{3}{2} & 0 & 1 & 0 \\
0 & \frac{3}{2} & 0 & 1 & 0 \\
0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 \\
0 & 0 & 0 & 0 & 1 \\
0 \\
0 & 0 & 0 & 0 & 0 \\
1
\end{array}\right)
$$

- Refer to an entry $(X, Y)$ in this matrix as $R(X \stackrel{*}{\Rightarrow} L Y)$
- Note that the $\frac{3}{2}$ "bonus" accrued for left-recursion of NPs appears in the (ROOT,NP) and (NP,NP) cells of the matrix


## Generalizing the geometric series

$$
\begin{array}{lll}
1 & \text { ROOT } & \rightarrow \text { NP } \\
\frac{2}{3} & \text { NP } & \rightarrow \text { Det N } \\
\frac{1}{3} & \text { NP } & \rightarrow \text { NP PP } \\
1 & \mathrm{PP} & \rightarrow \mathrm{P} \mathrm{NP}
\end{array}
$$

| 1 |  | $\rightarrow$ the |
| :---: | :---: | :---: |
| $\frac{2}{3}$ | N | $\rightarrow$ dog |
| $\frac{1}{3}$ | N | $\rightarrow$ cat |
| 1 | P | $\rightarrow$ near |

- The closure of our left-corner matrix is

$$
R_{L}=\begin{gathered}
\text { ROOT } \\
\text { ROOT } \\
\text { NP } \\
\text { NP } \\
\text { PP } \\
\text { Det } \\
\text { N } \\
\text { P }
\end{gathered}\left(\begin{array}{ccccc}
1 & \frac{3}{2} & 0 & 1 & 0 \\
0 & \frac{3}{2} & 0 & 1 & 0 \\
0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 \\
0 & 0 & 0 & 0 & 1 \\
0 \\
0 & 0 & 0 & 0 & 0 \\
1
\end{array}\right)
$$

- Refer to an entry $(X, Y)$ in this matrix as $R\left(X \stackrel{*}{\Rightarrow}_{L} Y\right)$
- Note that the $\frac{3}{2}$ "bonus" accrued for left-recursion of NPs appears in the (ROOT,NP) and (NP,NP) cells of the matrix
- We need to do the same with unary chains, constructing a unary-closure matrix $R_{U}$.


## Efficient incremental parsing: the probabilistic Earley algorithm

We can use the Earley algorithm (Earley, 1970) in a probabilistic incarnation (Stolcke, 1995) to deal with these infinite tree sets.

The (slightly oversimplified) probabilistic Earley algorithm has two fundamental types of operations:

- Prediction: if $Y$ is a possible goal, and $Y$ can lead to $Z$ through a left corner, choose a rule $Z \rightarrow \alpha$ and set up $\alpha$ as a new sequence of possible goals.
- Completion: if $Y$ is a possible goal, $Y$ can lead to $Z$ through unary rewrites, and we encounter a completed $Z$, absorb it and move on to the next sub-goal in the sequence.


## Efficient incremental parsing: the probabilistic Earley algorithm

- Parsing consists of constructing a chart of states (items)
- A state has the following structure:

- The forward probability is the total probability of getting from the root at the start of the sentence through to this state
- The inside probability is the "bottom-up" probability of the state


## Efficient incremental parsing: the probabilistic Earley algorithm

Inference rules for probabilistic Earley:

- Prediction:

| $X \rightarrow \beta \circ Y \gamma$ <br> $p$$\underset{q}{ }$ | $a: R\left(Y \stackrel{*}{\Rightarrow}_{L} Z\right) \quad b: Z \rightarrow \alpha$ |
| :---: | :---: |
| $Z \rightarrow \circ \alpha$ |  |
| $a b p \quad b$ |  |

## Efficient incremental parsing: the probabilistic Earley algorithm

Inference rules for probabilistic Earley:

- Prediction:

| $X \rightarrow \beta \circ Y \gamma$ <br> $p$$\underset{\sim}{2}$ | $a: R\left(Y \stackrel{*}{\Rightarrow}_{L} Z\right) \quad b: Z \rightarrow \alpha$ |
| :---: | :---: |
| $Z \rightarrow \circ \alpha$ |  |
| $a b p \quad b$ |  |

- Completion:



## Efficient incremental parsing: probabilistic Earley

## Efficient incremental parsing: probabilistic Earley

```
ROOT }->0N
1 1
    \square
```


## Efficient incremental parsing: probabilistic Earley

Det $\rightarrow$ othe
$1 \quad 1$
$\mathrm{NP} \rightarrow$ oDet N
$\frac{2}{3} \times \frac{3}{2} \quad \frac{2}{3}$
$\mathrm{NP} \rightarrow$ ONP PP

| $\frac{1}{3} \times \frac{3}{2} \quad \frac{1}{3}$ |
| :--- |
| $\mathrm{ROOT} \rightarrow$ ONP |
| 1 |

the
dog near

## Efficient incremental parsing: probabilistic Earley

```
Det }->\mathrm{ othe
1
NP}->0\mathrm{ Det N
\frac{2}{3}\times\frac{3}{2}
NP->oNP PP
\frac{1}{3}\times\frac{3}{2}
ROOT }->0N
1 1
theg

\section*{Efficient incremental parsing: probabilistic Earley}

near
the

\section*{Efficient incremental parsing: probabilistic Earley}

dog

\section*{Efficient incremental parsing: probabilistic Earley}
Det \(\rightarrow\) othe
1
\(\mathrm{NP} \rightarrow\) oDet N
\(\frac{2}{3} \times \frac{3}{2} \quad \frac{2}{3}\)
\(\mathrm{NP} \rightarrow \mathrm{ONP} \mathrm{PP}\)
\(\frac{1}{3} \times \frac{3}{2} \quad \frac{1}{3} \quad \mathrm{~N} \rightarrow\) ocat
\(\mathrm{ROOT} \rightarrow \mathrm{NP} \quad \frac{1}{3} \quad \frac{1}{3}\)
1

\section*{Efficient incremental parsing: probabilistic Earley}

Det \(\rightarrow\) othe
\(1 \quad 1\)
\(N P \rightarrow o\) Det \(N\)
\(\frac{2}{3} \times \frac{3}{2} \quad \frac{2}{3}\)
\(N P \rightarrow\) oNP PP
\(\frac{1}{3} \times \frac{3}{2} \quad \frac{1}{3}\)

ROOT \(\rightarrow\) oNP
1


\section*{Efficient incremental parsing: probabilistic Earley}
Det \(\rightarrow\) othe
1
\(\mathrm{NP} \rightarrow\) Det N
\(\frac{2}{3} \times \frac{3}{2} \quad \frac{2}{3}\)
\(\mathrm{NP} \rightarrow \mathrm{ONP} \mathrm{PP}\)
\(\frac{1}{3} \times \frac{3}{2} \quad \frac{1}{3}\)
\(\mathrm{ROOT} \rightarrow \mathrm{NP}\)
1

\section*{Efficient incremental parsing: probabilistic Earley}

Det \(\rightarrow\) othe
1
\(\mathrm{NP} \rightarrow \mathrm{oDet} \mathrm{N}\)
\(\frac{2}{3} \times \frac{3}{2}\)
\(\mathrm{NP} \rightarrow \mathrm{ONP} \mathrm{PP}\)
\(\frac{1}{3} \times \frac{3}{2}\)
\(\mathrm{ROOT} \rightarrow \mathrm{ONP}\)
1

\section*{Efficient incremental parsing: probabilistic Earley}


\section*{Prefix probabilities from probabilistic Earley}
- If you have just processed word \(w_{i}\), then the prefix probability of \(w_{1 . . . i}\) can be obtained by summing all forward probabilities of items that have the form \(X \rightarrow \alpha w_{i} \circ \beta\)

\section*{Prefix probabilities from probabilistic Earley}
- If you have just processed word \(w_{i}\), then the prefix probability of \(w_{1 . . . i}\) can be obtained by summing all forward probabilities of items that have the form \(X \rightarrow \alpha w_{i} \circ \beta\)
- In our example, we see:
\[
\begin{aligned}
& P(\text { the })=1 \\
& P(\text { the dog })=\frac{2}{3} \\
& P(\text { the dog near })=\frac{2}{9} \\
& P(\text { the dog near the })=\frac{2}{9}
\end{aligned}
\]

\section*{Prefix probabilities from probabilistic Earley}
- If you have just processed word \(w_{i}\), then the prefix probability of \(w_{1 . . . i}\) can be obtained by summing all forward probabilities of items that have the form \(X \rightarrow \alpha w_{i} \circ \beta\)
- In our example, we see:
\[
\begin{aligned}
& P(\text { the })=1 \\
& P(\text { the } \operatorname{dog})=\frac{2}{3} \\
& P(\text { the dog near })=\frac{2}{9} \\
& P(\text { the dog near the })=\frac{2}{9}
\end{aligned}
\]
- Taking the ratios of these prefix probabilities can give us conditional word probabilities

\section*{Probabilistic Earley as an "eager" algorithm}
- From the inside probabilities of the states on the chart, the posterior distribution on (incremental) trees can be directly calculated
- This posterior distribution is precisely the correct result of the application of Bayes' rule:
\[
P\left(T_{\text {incremental }} \mid w_{1 \ldots i}\right)=\frac{P\left(w_{1 \ldots i}, T_{\text {incremental }}\right)}{P\left(w_{1 \ldots i}\right)}
\]
- Hence, probabilistic Earley is also performing rational disambiguation
- Hale (2001) called this the "eager" property of an incremental parsing algorithm.

\section*{Probabilistic Earley algorithm: key ideas}
- We want to use probabilistic grammars for both disambiguation and calculating probability distributions over upcoming events
- Infinitely many trees can be constructed in polynomial time ( and space ( )
- The prefix probability of the string is calculated in the process
- By taking the log-ratio of two prefix probabilities, the surprisal of a word in its context can be calculated

\section*{Probabilistic Earley algorithm: key ideas}
- We want to use probabilistic grammars for both disambiguation and calculating probability distributions over upcoming events
- Infinitely many trees can be constructed in polynomial time \(\left(O\left(n^{3}\right)\right)\) and space ( )
- The prefix probability of the string is calculated in the process
- By taking the log-ratio of two prefix probabilities, the surprisal of a word in its context can be calculated

\section*{Probabilistic Earley algorithm: key ideas}
- We want to use probabilistic grammars for both disambiguation and calculating probability distributions over upcoming events
- Infinitely many trees can be constructed in polynomial time \(\left(O\left(n^{3}\right)\right)\) and space \(\left(O\left(n^{2}\right)\right)\)
- The prefix probability of the string is calculated in the process
- By taking the log-ratio of two prefix probabilities, the surprisal of a word in its context can be calculated

Probabilistic ambiguity resolution

\section*{Probabilistic ambiguity resolution}
- Let's consider another case of ambiguity:

\section*{Probabilistic ambiguity resolution}
- Let's consider another case of ambiguity:

The complex houses married students and their families.

\section*{Probabilistic ambiguity resolution}
- Let's consider another case of ambiguity:

The complex houses married students and their families.

The prime number few.

\section*{Probabilistic ambiguity resolution}
- Let's consider another case of ambiguity:

The complex houses married students and their families.

The prime number few.
- In-class exercise: develop a PCFG in which which the "garden-path" analysis is strongly disfavored
\[
\begin{array}{llll} 
& & 1 & \text { Det } \rightarrow \text { the } \\
\frac{2}{3} & \text { NP } \rightarrow \text { Det N } & \frac{2}{3} & \mathrm{~N} \rightarrow \text { dog } \\
\frac{1}{3} & \mathrm{NP} \rightarrow \text { NP PP } & \frac{1}{3} & \mathrm{~N} \rightarrow \text { cat } \\
1 & \mathrm{PP} \rightarrow \mathrm{P} \mathrm{NP} & 1 & \mathrm{P} \rightarrow \text { near }
\end{array}
\]

Incrementality: you can think of a partial tree as marginalizing over all completions of the partial tree.
It has a corresponding marginal probability in the PCFG.

the

\section*{Our more complex examples}

- Estimate of statistics of the linguistic environment

"traces" of extraction from
- Focus on predictive, incremental processing

- An incremental probabilistic (Earley) parsing model
\[
\begin{array}{ll}
\frac{2}{3} & N P \rightarrow \text { Det N } \\
\frac{1}{3} & N P \rightarrow N P ~ P P \\
1 & P P \rightarrow P N P
\end{array}
\]


Human real-time syntactic processing

\section*{Human real-time syntactic processing}
- Let a word's difficulty be its surprisal given its context:
\[
\begin{aligned}
\operatorname{Surprisal}\left(w_{i}\right) & \equiv \log \frac{1}{P\left(w_{i} \mid \operatorname{CONTEXT}\right)} \\
& {\left[\approx \log \frac{1}{P\left(w_{i} \mid w_{1 \cdots i-1}\right)}\right] }
\end{aligned}
\]

\section*{Human real-time syntactic processing}
- Let a word's difficulty be its surprisal given its context:
\[
\begin{aligned}
\operatorname{Surprisal}\left(w_{i}\right) & \equiv \log \frac{1}{P\left(w_{i} \mid \text { CONTEXT }\right)} \\
& {\left[\approx \log \frac{1}{P\left(w_{i} \mid w_{1 \cdots i-1}\right)}\right] }
\end{aligned}
\]
- Captures the expectation intuition: the more we expect an event, the easier it is to process

\section*{Human real-time syntactic processing}
- Let a word's difficulty be its surprisal given its context:
\[
\begin{aligned}
\operatorname{Surprisal}\left(w_{i}\right) & \equiv \log \frac{1}{P\left(w_{i} \mid \text { CONTEXT }\right)} \\
& {\left[\approx \log \frac{1}{P\left(w_{i} \mid w_{1 \cdots i-1}\right)}\right] }
\end{aligned}
\]
- Captures the expectation intuition: the more we expect an event, the easier it is to process
- Brains are prediction engines!

\section*{Human real-time syntactic processing}
- Let a word's difficulty be its surprisal given its context:
\[
\begin{aligned}
\operatorname{Surprisal}\left(w_{i}\right) & \equiv \log \frac{1}{P\left(w_{i} \mid \text { CONTEXT }\right)} \\
& {\left[\approx \log \frac{1}{P\left(w_{i} \mid w_{1 \cdots i-1}\right)}\right] }
\end{aligned}
\]
- Captures the expectation intuition: the more we expect an event, the easier it is to process
- Brains are prediction engines!
my brother came inside to...

\section*{Human real-time syntactic processing}
- Let a word's difficulty be its surprisal given its context:
\[
\begin{aligned}
\operatorname{Surprisal}\left(w_{i}\right) & \equiv \log \frac{1}{P\left(w_{i} \mid \text { CONTEXT }\right)} \\
& {\left[\approx \log \frac{1}{P\left(w_{i} \mid w_{1 \cdots i-1}\right)}\right] }
\end{aligned}
\]
- Captures the expectation intuition: the more we expect an event, the easier it is to process
- Brains are prediction engines!
my brother came inside to... chat?

\section*{Human real-time syntactic processing}
- Let a word's difficulty be its surprisal given its context:
\[
\begin{aligned}
\operatorname{Surprisal}\left(w_{i}\right) & \equiv \log \frac{1}{P\left(w_{i} \mid \text { CONTEXT }\right)} \\
& {\left[\approx \log \frac{1}{P\left(w_{i} \mid w_{1 \cdots i-1}\right)}\right] }
\end{aligned}
\]
- Captures the expectation intuition: the more we expect an event, the easier it is to process
- Brains are prediction engines!
my brother came inside to... chat? wash?
(Hale, 2001, NAACL; Levy, 2008, Cognition)

\section*{Human real-time syntactic processing}
- Let a word's difficulty be its surprisal given its context:
\[
\begin{aligned}
\operatorname{Surprisal}\left(w_{i}\right) & \equiv \log \frac{1}{P\left(w_{i} \mid \text { CONTEXT }\right)} \\
& {\left[\approx \log \frac{1}{P\left(w_{i} \mid w_{1 \cdots i-1}\right)}\right] }
\end{aligned}
\]
- Captures the expectation intuition: the more we expect an event, the easier it is to process
- Brains are prediction engines!
my brother came inside to... chat? wash? get warm?

\section*{Human real-time syntactic processing}
- Let a word's difficulty be its surprisal given its context:
\[
\begin{aligned}
\operatorname{Surprisal}\left(w_{i}\right) & \equiv \log \frac{1}{P\left(w_{i} \mid \text { CONTEXT }\right)} \\
& {\left[\approx \log \frac{1}{P\left(w_{i} \mid w_{1 \cdots i-1}\right)}\right] }
\end{aligned}
\]
- Captures the expectation intuition: the more we expect an event, the easier it is to process
- Brains are prediction engines!
my brother came inside to... chat? wash? get warm? the children went outside to...

\section*{Human real-time syntactic processing}
- Let a word's difficulty be its surprisal given its context:
\[
\begin{aligned}
\operatorname{Surprisal}\left(w_{i}\right) & \equiv \log \frac{1}{P\left(w_{i} \mid \text { CONTEXT }\right)} \\
& {\left[\approx \log \frac{1}{P\left(w_{i} \mid w_{1 \cdots i-1}\right)}\right] }
\end{aligned}
\]
- Captures the expectation intuition: the more we expect an event, the easier it is to process
- Brains are prediction engines!
my brother came inside to... chat? wash? get warm? the children went outside to... play

\section*{Human real-time syntactic processing}
- Let a word's difficulty be its surprisal given its context:
\[
\begin{aligned}
\operatorname{Surprisal}\left(w_{i}\right) & \equiv \log \frac{1}{P\left(w_{i} \mid \operatorname{CONTEXT}\right)} \\
& {\left[\approx \log \frac{1}{P\left(w_{i} \mid w_{1 \cdots i-1}\right)}\right] }
\end{aligned}
\]
- Captures the expectation intuition: the more we expect an event, the easier it is to process
- Brains are prediction engines!
my brother came inside to... chat? wash? get warm?
the children went outside to... play
- Predictable words are read faster (Ehrich \& Rayner, 1981) and have distinctive EEG responses (Kutas \& Hillyard 1980)

\section*{Human real-time syntactic processing}
- Let a word's difficulty be its surprisal given its context:
\[
\begin{aligned}
\operatorname{Surprisal}\left(w_{i}\right) & \equiv \log \frac{1}{P\left(w_{i} \mid \text { CONTEXT }\right)} \\
& {\left[\approx \log \frac{1}{P\left(w_{i} \mid w_{1 \cdots i-1}\right)}\right] }
\end{aligned}
\]
- Captures the expectation intuition: the more we expect an event, the easier it is to process
- Brains are prediction engines!
my brother came inside to... chat? wash? get warm?
the children went outside to... play
- Predictable words are read faster (Ehrlich \& Rayner, 1981) and have distinctive EEG responses (Kutas \& Hillyard 1980)
- Combine with probabilistic grammars to give grammatical expectations
(Hale, 2001, NAACL; Levy, 2008, Cognition)

\section*{The surprisal graph}


\section*{Garden-pathing and surprisal}

When the dog scratched the vet and his new assistant removed the muzzle.

\section*{Garden-pathing and surprisal}
- Here's a local syntactic ambiguity

When the dog scratched the vet and his new assistant removed the muzzle.

\section*{Garden-pathing and surprisal}
- Here's a local syntactic ambiguity

When the dog scratched the vet and his new assistant removed the muzzle.

\section*{Garden-pathing and surprisal}
- Here's a local syntactic ambiguity

When the dog scratched the vet and his new assistant removed the muzzle.

\section*{Garden-pathing and surprisal}
- Here's a local syntactic ambiguity

When the dog scratched the vet and his new assistant removed the muzzle.

\section*{Garden-pathing and surprisal}
- Here's a local syntactic ambiguity

When the dog scratched the vet and his new assistant removed the muzzle.
difficulty here
(68ms/char)

\section*{Garden-pathing and surprisal}
- Here's a local syntactic ambiguity

When the dog scratched the vet and his new assistant removed the muzzle.
- Compare with:
difficulty here
(68ms/char)

When the dog scratched, the vet and his new assistant removed the muzzle.

When the dog scratched its owner the vet and his new assistant removed the muzzle.

\section*{Garden-pathing and surprisal}
- Here's a local syntactic ambiguity

When the dog scratched the vet and his new assistant removed the muzzle.
- Compare with:

When the dog scratched, the vet and his new assistant removed the muzzle.

When the dog scratched its owner the vet and his new assistant removed the muzzle.

\section*{Garden-pathing and surprisal}
- Here's a local syntactic ambiguity

When the dog scratched the vet and his new assistant removed the muzzle.
- Compare with:

When the dog scratched, the vet and his new assistant removed the muzzle.

When the dog scratched its owner the vet and his new assistant removed the muzzle.

\section*{Garden-pathing and surprisal}
- Here's a local syntactic ambiguity

When the dog scratched the vet and his new assistant removed the muzzle.
- Compare with:

When the dog scratched, the vet and his new assistant removed the muzzle.

When the dog scratched its owner the vet and his new assistant removed the muzzle.

\section*{Garden-pathing and surprisal}
- Here's a local syntactic ambiguity

When the dog scratched the vet and his new assistant removed the muzzle.
- Compare with:

When the dog scratched, the vet and his new assistant removed the muzzle.

When the dog scratched its owner the vet and his new assistant removed the muzzle.
easier
(50ms/char)
(Frazier \& Rayner, 1982)

\section*{A small PCFG for this sentence type}
\begin{tabular}{llr|lr|llr} 
S & \(\rightarrow\) SBAR S & 0.3 & Conj \(\rightarrow\) and & 1 & Adj & \(\rightarrow\) new & 1 \\
S & \(\rightarrow\) NP VP & 0.7 & Det \(\rightarrow\) the & 0.8 & VP & \(\rightarrow\) V NP & 0.5 \\
SBAR & \(\rightarrow\) COMPL S & 0.3 & Det \(\rightarrow\) its & 0.1 & VP & \(\rightarrow\) V & 0.5 \\
SBAR & \(\rightarrow\) COMPL S COMMA & 0.7 & Det \(\rightarrow\) his & 0.1 & V & \(\rightarrow\) scratched & 0.25 \\
COMPL \(\rightarrow\) When & 1 & N & \(\rightarrow\) dog & 0.2 & V & \(\rightarrow\) removed & 0.25 \\
NP & \(\rightarrow\) Det N & 0.6 & N & \(\rightarrow\) vet & 0.2 & V & \(\rightarrow\) arrived \\
NP & \(\rightarrow\) Det Adj N & 0.2 & \(\mathrm{~N} \rightarrow\) assistant & 0.2 & COMMA \(\rightarrow\), & 1 \\
NP & \(\rightarrow\) NP Conj NP & 0.2 & N & \(\rightarrow\) muzzle & 0.2 & & \\
& & & \(\mathrm{~N} \rightarrow\) owner & 0.2 & & &
\end{tabular}

\section*{A small PCFG for this sentence type}
\begin{tabular}{llr|lr|llr} 
S & \(\rightarrow\) SBAR S & 0.3 & Conj \(\rightarrow\) and & 1 & Adj & \(\rightarrow\) new & 1 \\
S & \(\rightarrow\) NP VP & 0.7 & Det \(\rightarrow\) the & 0.8 & VP & \(\rightarrow\) V NP & 0.5 \\
\hline SBAR \(\rightarrow\) COMPL S & 0.3 & Det \(\rightarrow\) its & 0.1 & VP & \(\rightarrow \mathrm{V}\) & 0.5 \\
SBAR \(\rightarrow\) COMPL S COMMA & 0.7 & Det \(\rightarrow\) his & 0.1 & V & \(\rightarrow\) scratched & 0.25 \\
COMPL \(\rightarrow\) When & 1 & N & \(\rightarrow\) dog & 0.2 & V & \(\rightarrow\) removed & 0.25 \\
NP & \(\rightarrow\) Det N & 0.6 & N & \(\rightarrow\) vet & 0.2 & V & \(\rightarrow\) arrived \\
NP & \(\rightarrow\) Det Adj N & 0.2 & N & \(\rightarrow\) assistant & 0.2 & COMMA \(\rightarrow\), & 1 \\
NP & \(\rightarrow\) NP Conj NP & 0.2 & N & \(\rightarrow\) muzzle & 0.2 & & \\
& & & N & \(\rightarrow\) owner & 0.2 & &
\end{tabular}

\section*{A small PCFG for this sentence type}
\begin{tabular}{llr|lr|llr} 
S & \(\rightarrow\) SBAR S & 0.3 & Conj \(\rightarrow\) and & 1 & Adi & \(\rightarrow\) new & 1 \\
S & \(\rightarrow\) NP VP & 0.7 & Det \(\rightarrow\) the & 0.8 & VP & \(\rightarrow\) V NP & 0.5 \\
SBAR \(\rightarrow\) COMPL S & 0.3 & Det \(\rightarrow\) its & 0.1 & VP & \(\rightarrow\) V & 0.5 \\
SBAR & \(\rightarrow\) COMPL S COMMA & 0.7 & Det \(\rightarrow\) his & 0.1 & V & \(\rightarrow\) scratched & 0.25 \\
COMPL \(\rightarrow\) When & 1 & N & \(\rightarrow\) dog & 0.2 & V & \(\rightarrow\) removed & 0.25 \\
NP & \(\rightarrow\) Det N & 0.6 & N & \(\rightarrow\) vet & 0.2 & V & \(\rightarrow\) arrived \\
NP & \(\rightarrow\) Det Adj N & 0.2 & N & \(\rightarrow\) assistant & 0.2 & COMMA \(\rightarrow\), & 1 \\
NP & \(\rightarrow\) NP Conj NP & 0.2 & N & \(\rightarrow\) muzzle & 0.2 & & \\
& & & N & \(\rightarrow\) owner & 0.2 & &
\end{tabular}

\section*{A small PCFG for this sentence type}
\begin{tabular}{llr|lr|llr} 
S & \(\rightarrow\) SBAR S & 0.3 & Conj \(\rightarrow\) and & 1 & Adi & \(\rightarrow\) new & 1 \\
S & \(\rightarrow\) NP VP & 0.7 & Det \(\rightarrow\) the & 0.8 & VP & \(\rightarrow\) V NP & 0.5 \\
SBAR \(\rightarrow\) COMPL S & 0.3 & Det \(\rightarrow\) its & 0.1 & VP & \(\rightarrow\) V & 0.5 \\
SBAR \(\rightarrow\) COMPL S COMMA & 0.7 & Det \(\rightarrow\) his & 0.1 & V & \(\rightarrow\) scratched & 0.25 \\
COMPL \(\rightarrow\) When & 1 & N & \(\rightarrow\) dog & 0.2 & V & \(\rightarrow\) removed & 0.25 \\
NP \(\rightarrow\) Det N & 0.6 & N & \(\rightarrow\) vet & 0.2 & V & \(\rightarrow\) arrived & 0.5 \\
NP & \(\rightarrow\) Det Adj N & 0.2 & N & \(\rightarrow\) assistant & 0.2 & COMMA \(\rightarrow\), & 1 \\
NP & \(\rightarrow\) NP Conj NP & 0.2 & N & \(\rightarrow\) muzzle & 0.2 & & \\
\hline
\end{tabular}

\section*{Two incremental trees}

\section*{Two incremental trees}
- "Garden-path" analysis:


\section*{Two incremental trees}
- "Garden-path" analysis:


\section*{Two incremental trees}
- "Garden-path" analysis:


\section*{Two incremental trees}
- "Garden-path" analysis:

\[
P\left(T \mid w_{1 \ldots 10}\right)=0.826
\]
- Ultimately-correct analysis


\section*{Two incremental trees}
- "Garden-path" analysis:

\[
P\left(T \mid w_{1 \ldots 10}\right)=0.826
\]
- Ultimately-correct analysis

\[
P\left(T \mid w_{1 \ldots 10}\right)=0.174
\]

\section*{Two incremental trees}
- "Garden-path" analysis:

\[
P\left(T \mid w_{1 \ldots 10}\right)=0.826
\]
- Ultimately-correct analysis

\[
P\left(T \mid w_{1 \ldots 10}\right)=0.174
\]

\section*{Two incremental trees}
- "Garden-path" analysis:

\[
P\left(T \mid w_{1 \ldots 10}\right)=0.826
\]
- Ultimately-correct analysis

\[
P\left(T \mid w_{1 \ldots 10}\right)=0.174
\]

\section*{Two incremental trees}
- "Garden-path" analysis:


Disambiguating word probability marginalizes over incremental trees:
- Ultimately-correct analysis

\[
P\left(T \mid w_{1 \ldots 10}\right)=0.174
\]

\section*{Two incremental trees}
- "Garden-path" analysis:


Disambiguating word probability marginalizes over incremental trees:
\[
P\left(\text { removed } \mid w_{1 \ldots 10}\right)=\sum_{T} P(\text { removed } \mid T) P\left(T \mid w_{1 \ldots .10}\right)
\]
- Ultimately-correct analysis
\[
=0 \times 0.826+0.25 \times 0.174
\]

\[
P\left(T \mid w_{1 \ldots 10}\right)=0.174
\]

\section*{Preceding context can disambiguate}
- "its owner" takes up the object slot of scratched

\(\begin{array}{lr}\text { Condition } & \text { Surprisal at Resolution } \\ \text { NP absent } & 4.2 \\ \text { NP present } & 2\end{array}\)

\section*{Sensitivity to verb argument structure}
- A superficially similar example:

When the dog arrived the vet and his new assistant removed the muzzle.

\section*{Sensitivity to verb argument structure}
- A superficially similar example:

When the dog arrived the vet and his new assistant removed the muzzle.

\section*{Easier here}

\section*{Sensitivity to verb argument structure}
- A superficially similar example:

When the dog arrived the vet and his new assistant removed the muzzle.
But harder here!

\section*{Sensitivity to verb argument structure}
- A superficially similar example:

When the dog arrived the vet and his new assistant removed the muzzle.


\section*{Easier here}
(c.f. When the dog scratched the vet and his new assistant removed the muzzle.)

\section*{Modeling argument-structure sensitivity}
\begin{tabular}{llr|lr|llr} 
S & \(\rightarrow\) SBAR S & 0.3 & Conj \(\rightarrow\) and & 1 & Adj & \(\rightarrow\) new & 1 \\
S & \(\rightarrow\) NP VP & 0.7 & Det \(\rightarrow\) the & 0.8 & VP & \(\rightarrow\) V NP & 0.5 \\
SBAR & \(\rightarrow\) COMPL S & 0.3 & Det \(\rightarrow\) its & 0.1 & VP & \(\rightarrow\) V & 0.5 \\
SBAR & \(\rightarrow\) COMPL S COMMA & 0.7 & Det \(\rightarrow\) his & 0.1 & V & \(\rightarrow\) scratched & 0.25 \\
COMPL \(\rightarrow\) When & 1 & N & \(\rightarrow\) dog & 0.2 & V & \(\rightarrow\) removed & 0.25 \\
NP & \(\rightarrow\) Det N & 0.6 & N & \(\rightarrow\) vet & 0.2 & V & \(\rightarrow\) arrived \\
NP & \(\rightarrow\) Det Adj N & 0.2 & \(\mathrm{~N} \rightarrow\) assistant & 0.2 & COMMA \(\rightarrow\), & 1 \\
NP & \(\rightarrow\) NP Conj NP & 0.2 & \(\mathrm{~N} \rightarrow\) muzzle & 0.2 & & & \\
& & & \(\mathrm{~N} \rightarrow\) owner & 0.2 & & &
\end{tabular}

\section*{Modeling argument-structure sensitivity}
\begin{tabular}{llr|lr|llr} 
S & \(\rightarrow\) SBAR S & 0.3 & Conj \(\rightarrow\) and & 1 & Adj & \(\rightarrow\) new & 1 \\
S & \(\rightarrow\) NP VP & 0.7 & Det \(\rightarrow\) the & 0.8 & VP & \(\rightarrow\) V NP & 0.5 \\
SBAR & \(\rightarrow\) COMPL S & 0.3 & Det \(\rightarrow\) its & 0.1 & VP & \(\rightarrow\) V & 0.5 \\
SBAR & \(\rightarrow\) COMPL S COMMA & 0.7 & Det \(\rightarrow\) his & 0.1 & V & \(\rightarrow\) scratched & 0.25 \\
COMPL \(\rightarrow\) When & 1 & N & \(\rightarrow\) dog & 0.2 & V & \(\rightarrow\) removed & 0.25 \\
NP & \(\rightarrow\) Det N & 0.6 & N & \(\rightarrow\) vet & 0.2 & V & \(\rightarrow\) arrived \\
NP & \(\rightarrow\) Det Adj N & 0.2 & N & 0.5 \\
NP & \(\rightarrow\) NP Consistant & 0.2 & COMMA \(\rightarrow\), & 1 \\
& & 0.2 & N & \(\rightarrow\) muzzle & 0.2 & &
\end{tabular}
- The "context-free" assumption doesn't preclude relaxing probabilistic locality:

\section*{Modeling argument-structure sensitivity}
\begin{tabular}{llr|lr|llr|} 
S & \(\rightarrow\) SBAR S & 0.3 & Conj \(\rightarrow\) and & 1 & Adi & \(\rightarrow\) new & 1 \\
S & \(\rightarrow\) NP VP & 0.7 & Det \(\rightarrow\) the & 0.8 & VP & \(\rightarrow\) V NP & 0.5 \\
SBAR & \(\rightarrow\) COMPL S & 0.3 & Det \(\rightarrow\) its & 0.1 & VP & \(\rightarrow\) V & 0.5 \\
SBAR & \(\rightarrow\) COMPL S COMMA & 0.7 & Det \(\rightarrow\) his & 0.1 & V & \(\rightarrow\) scratched & 0.25 \\
COMPL \(\rightarrow\) When & 1 & N & \(\rightarrow\) dog & 0.2 & V & \(\rightarrow\) removed & 0.25 \\
NP & \(\rightarrow\) Det N & 0.6 & N & \(\rightarrow\) vet & 0.2 & V & \(\rightarrow\) arrived \\
NP & \(\rightarrow\) Det Adj N & 0.2 & N & \(\rightarrow\) assistant & 0.2 & COMMA \(\rightarrow\), & 1 \\
NP & \(\rightarrow\) NP Conj NP & 0.2 & N & \(\rightarrow\) muzzle & 0.2 & & \\
& & & N & \(\rightarrow\) owner & 0.2 & &
\end{tabular}
- The "context-free" assumption doesn't preclude relaxing probabilistic locality:

\section*{Modeling argument-structure sensitivity}
\begin{tabular}{llr|lr|llr} 
S & \(\rightarrow\) SBAR S & 0.3 & Conj \(\rightarrow\) and & 1 & Adj & \(\rightarrow\) new & 1 \\
S & \(\rightarrow\) NP VP & 0.7 & Det \(\rightarrow\) the & 0.8 & VP & \(\rightarrow\) V NP & 0.5 \\
SBAR & \(\rightarrow\) COMPL S & 0.3 & Det \(\rightarrow\) its & 0.1 & VP & \(\rightarrow\) V & 0.5 \\
SBAR & \(\rightarrow\) COMPL S COMMA & 0.7 & Det \(\rightarrow\) his & 0.1 & V & \(\rightarrow\) scratched & 0.25 \\
COMPL \(\rightarrow\) When & 1 & \(\mathrm{~N} \rightarrow\) dog & 0.2 & V & \(\rightarrow\) removed & 0.25 \\
NP & \(\rightarrow\) Det N & 0.6 & N & \(\rightarrow\) vet & 0.2 & V & \(\rightarrow\) arrived \\
NP & \(\rightarrow\) Det Adj N & 0.2 & N & \(\rightarrow\) assistant & 0.2 & COMMA \(\rightarrow\), & 1 \\
NP & \(\rightarrow\) NP Conj NP & 0.2 & N & \(\rightarrow\) muzzle & 0.2 & & \\
& & & N & \(\rightarrow\) owner & 0.2 & &
\end{tabular}
- The "context-free" assumption doesn't preclude relaxing probabilistic locality:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathrm{VP} \rightarrow \mathrm{V}\) NP & 0.5 & \multirow{7}{*}{Replaced by \(\Rightarrow\)} & VP & \(\rightarrow\) Vtrans NP & 0.45 \\
\hline \(\mathrm{VP} \rightarrow \mathrm{V}\) & 0.5 & & VP & \(\rightarrow\) Vtrans & 0.05 \\
\hline \(\mathrm{V} \rightarrow\) scratched & 0.25 & & VP & \(\rightarrow\) Vintrans & 0.45 \\
\hline \(\vee \rightarrow\) removed & 0.25 & & VP & \(\rightarrow\) Vintrans NP & 0.05 \\
\hline V \(\rightarrow\) arrived & 0.5 & & Vtrans & \(\rightarrow\) scratched & 0.5 \\
\hline & & & Vtrans & \(\rightarrow\) removed & 0.5 \\
\hline & & & Vintrans & \(\rightarrow\) arrived & 1 \\
\hline
\end{tabular}
(Johnson, 1998; Klein \& Manning, 2003)

\section*{Result}

When the dog arrived the vet and his new assistant removed the muzzle.

\section*{ambiguity onset}

\section*{ambiguity resolution}

When the dog scratched the vet and his new assistant removed the muzzle.
\begin{tabular}{lrr}
\multicolumn{3}{c}{ Transitivity-distinguishing PCFG } \\
Condition & Ambiguity onset & Resolution \\
Intransitive (arrived) & 2.11 & 3.20 \\
Transitive (scratched) & 0.44 & 8.04
\end{tabular}

\section*{Move to broad coverage}
- Instead of the pedagogical grammar, a "broad-coverage" grammar from the parsed Brown corpus (11,984 rules)
- Relative-frequency estimation of rule probabilities ("vanilla" PCFG)
- (We'll discuss these estimation techniques
 next class)

\section*{Syntactic complexity--non-probabilistic}
- On the resource limitation view, memory demands are a "processing bottleneck"
- Gibson 1998, 2000 (DLT): multiple and/or more distant dependencies are harder to process

\section*{Syntactic complexity--non-probabilistic}
- On the resource limitation view, memory demands are a "processing bottleneck"
- Gibson 1998, 2000 (DLT): multiple and/or more distant dependencies are harder to process
the reporter who attacked the senator

\section*{Syntactic complexity--non-probabilistic}
- On the resource limitation view, memory demands are a "processing bottleneck"
- Gibson 1998, 2000 (DLT): multiple and/or more distant dependencies are harder to process
the reporter who attacked the senator

\section*{Syntactic complexity--non-probabilistic}
- On the resource limitation view, memory demands are a "processing bottleneck"
- Gibson 1998, 2000 (DLT): multiple and/or more distant dependencies are harder to process
the reporter who attacked the senator

\section*{Syntactic complexity--non-probabilistic}
- On the resource limitation view, memory demands are a "processing bottleneck"
- Gibson 1998, 2000 (DLT): multiple and/or more distant dependencies are harder to process

Processing
the reporter who attacked the senator

\section*{Syntactic complexity--non-probabilistic}
- On the resource limitation view, memory demands are a "processing bottleneck"
- Gibson 1998, 2000 (DLT): multiple and/or more distant dependencies are harder to process

> Processing
the reporter who attacked the senator
Easy

\section*{Syntactic complexity--non-probabilistic}
- On the resource limitation view, memory demands are a "processing bottleneck"
- Gibson 1998, 2000 (DLT): multiple and/or more distant dependencies are harder to process
the reporter who attacked the senator
Easy
the reporter who the senator attacked

\section*{Syntactic complexity--non-probabilistic}
- On the resource limitation view, memory demands are a "processing bottleneck"
- Gibson 1998, 2000 (DLT): multiple and/or more distant dependencies are harder to process
the reporter who attacked the senator
Easy
the reporter who the senator attacked

\section*{Syntactic complexity--non-probabilistic}
- On the resource limitation view, memory demands are a "processing bottleneck"
- Gibson 1998, 2000 (DLT): multiple and/or more distant dependencies are harder to process

> Processing
the reporter who attacked the senator Easy
the reporter who the senaitor attacked Hard

\section*{Rethinking locality: RC extraposition}

\section*{Rethinking locality: RC extraposition}
- Equipped with a theory of probabilistic expectations, let's revisit more "memory"-oriented results

\section*{Rethinking locality: RC extraposition}
- Equipped with a theory of probabilistic expectations, let's revisit more "memory"-oriented results
- Example: Levy et al. (2012) found found consistent difficulty effects induced by RC extraposition

\section*{Rethinking locality: RC extraposition}
- Equipped with a theory of probabilistic expectations, let's revisit more "memory"-oriented results
- Example: Levy et al. (2012) found found consistent difficulty effects induced by RC extraposition
- Is this evidence for a special type of locality: a phrasal adjacency constraint (or a constraint against crossing dependencies)?
(Levy, Fedorenko, Breen, \& Gibson, 2012) \({ }^{91}\)

\section*{Rethinking locality: RC extraposition}
- Equipped with a theory of probabilistic expectations, let's revisit more "memory"-oriented results
- Example: Levy et al. (2012) found found consistent difficulty effects induced by RC extraposition

- Is this evidence for a special type of locality: a phrasal adjacency constraint (or a constraint against crossing dependencies)?
(Levy, Fedorenko, Breen, \& Gibson, 2012) 91

\section*{Rethinking locality: RC extraposition}
- Equipped with a theory of probabilistic expectations, let's revisit more "memory"-oriented results
- Example: Levy et al. (2012) found found consistent difficulty effects induced by RC extraposition

After dinner, a musician who was hired for the wedding arrived After dinner, a muscian arrived who was hired for the wedding
- Is this evidence for a special type of locality: a phrasal adjacency constraint (or a constraint against crossing dependencies)?
(Levy, Fedorenko, Breen, \& Gibson, 2012) 91

\section*{Rethinking locality: RC extraposition}
- Equipped with a theory of probabilistic expectations, let's revisit more "memory"-oriented results
- Example: Levy et al. (2012) found found consistent difficulty effects induced by RC extraposition

\section*{,}
easy
After dinner, a musician who was hired for the wedding arrived After dinner, a musician arrived who was hired for the wedding \(\longleftarrow\) hard
- Is this evidence for a special type of locality: a phrasal adjacency constraint (or a constraint against crossing dependencies)?
\(\left(\right.\) Levy, Fedorenko, Breen, \& Gibson, 2012) \({ }^{91}\)

\section*{Rethinking locality: RC extraposition}
- Equipped with a theory of probabilistic expectations, let's revisit more "memory"-oriented results
- Example: Levy et al. (2012) found found consistent difficulty effects induced by RC extraposition
easy
After dinner, a musician who was hired for the wedding arrived After dinner, a muscian arrived who was hired for the wedding \(\longleftarrow\) hard The chair conssulted the execytive about the companies who was making lots of \(\$\)
- Is this evidence for a special type of locality: a phrasal adjacency constraint (or a constraint against crossing dependencies)?
(Levy, Fedorenko, Breen, \& Gibson, 2012) 91

\section*{Rethinking locality: RC extraposition}
- Equipped with a theory of probabilistic expectations, let's revisit more "memory"-oriented results
- Example: Levy et al. (2012) found found consistent difficulty effects induced by RC extraposition

After dinner, a musician who was hired for the wedding arrived After dinner, a muscian arrived who was hired for the wedding

The chair consulted the executive of the companies who was making lots of \(\mathbb{I}\) The chair conssulted the execytive about the companies who was making lots of \(\$\)
- Is this evidence for a special type of locality: a phrasal adjacency constraint (or a constraint against crossing dependencies)?
(Levy, Fedorenko, Breen, \& Gibson, 2012) 91

\section*{Rethinking locality: RC extraposition}
- Equipped with a theory of probabilistic expectations, let's revisit more "memory"-oriented results
- Example: Levy et al. (2012) found found consistent difficulty effects induced by RC extraposition

After dinner, a musician who was hired for the wedding arrived After dinner, a muscian arrived who was hired for the wedding

The chair consulted the executive of the companies who was making lots of \(\mathbb{I}\) The chair consslled the execytive about the companies who was making lots of \(\$\)
- Is this evidence for a special type of locality: a phrasal adjacency constraint (or a constraint against crossing dependencies)?
(Levy, Fedorenko, Breen, \& Gibson, 201 2)

\section*{Probability \& extraposition}

\section*{Probability \& extraposition}

But...

\section*{Probability \& extraposition}
- But...
- ...RC extraposition is relatively rare in English

\section*{Probability \& extraposition}
- But...
- ...RC extraposition is relatively rare in English


\section*{Probability \& extraposition}
- But...
- ...RC extraposition is relatively rare in English


\section*{Probability \& extraposition}
- But...
- ...RC extraposition is relatively rare in English


\section*{Probability \& extraposition}
- But...
- ...RC extraposition is relatively rare in English


\section*{Probability \& extraposition}
- But...
- ...RC extraposition is relatively rare in English


\section*{Probability \& extraposition}
- But...
- ...RC extraposition is relatively rare in English

(estimated from the parsed Brown corpus)

\section*{Probability \& extraposition}
- But...
- ...RC extraposition is relatively rare in English

(estimated from the parsed Brown corpus)

\section*{Probability \& extraposition}
- But...
- ...RC extraposition is relatively rare in English

(estimated from the parsed Brown corpus)
- Alternative hypothesis: processing extraposed RCs is hard because they're unexpected

\section*{Testing the role of expectations}

\section*{Testing the role of expectations}

If extraposed RCs are hard because they're unexpected...

\section*{Testing the role of expectations}
- If extraposed RCs are hard because they're unexpected...
- ...then making them more expected should make them easier

\section*{Testing the role of expectations}
- If extraposed RCs are hard because they're unexpected...
- ...then making them more expected should make them easier
- Work by Wasow, Jaeger, and colleagues (Wasow et al., 2005, Levy \& Jaeger 2007) has found that premodifier type can affect expectation for (in-situ) RCs
a barber...
the barber...
the only barber...
low RC expectation
higher RC expectation
very high RC expectation

\section*{Testing the role of expectations}
- If extraposed RCs are hard because they're unexpected...
- ...then making them more expected should make them easier
- Work by Wasow, Jaeger, and colleagues (Wasow et al., 2005, Levy \& Jaeger 2007) has found that premodifier type can affect expectation for (in-situ) RCs
a barber... low RC expectation
the barber... higher RC expectation
the only barber... very high RC expectation
- If premodifier-induced expectations are carried over past the continuous NP domain, we may be able to manipulate extraposed RC expectations the same way*

\section*{Testing the role of expectations}
- If extraposed RCs are hard because they're unexpected...
- ...then making them more expected should make them easier
- Work by Wasow, Jaeger, and colleagues (Wasow et al., 2005, Levy \& Jaeger 2007) has found that premodifier type can affect expectation for (in-situ) RCs
a barber... low RC expectation
the barber... higher RC expectation
the only barber... very high RC expectation
- If premodifier-induced expectations are carried over past the continuous NP domain, we may be able to manipulate extraposed RC expectations the same way*

The chair consulted the executives about the companies...
The chair consulted only those execufives abput the companies...

\section*{Testing the role of expectations}
- If extraposed RCs are hard because they're unexpected...
- ...then making them more expected should make them easier
- Work by Wasow, Jaeger, and colleagues (Wasow et al., 2005, Levy \& Jaeger 2007) has found that premodifier type can affect expectation for (in-situ) RCs
a barber... low RC expectation
the barber... higher RC expectation
the only barber... very high RC expectation
- If premodifier-induced expectations are carried over past the continuous NP domain, we may be able to manipulate extraposed RC expectations the same way*

The chair consulted the executives about the companies... RC less expected The chair consulted only those executives about the companies...

\section*{Testing the role of expectations}
- If extraposed RCs are hard because they're unexpected...
- ...then making them more expected should make them easier
- Work by Wasow, Jaeger, and colleagues (Wasow et al., 2005, Levy \& Jaeger 2007) has found that premodifier type can affect expectation for (in-situ) RCs
a barber... low RC expectation
the barber... higher RC expectation
the only barber... very high RC expectation
- If premodifier-induced expectations are carried over past the continuous NP domain, we may be able to manipulate extraposed RC expectations the same way*

The chair consulted the executives about the companies... RC less expected The chair consulted only those execufives abput the companies. . . RC more expected

\section*{Experimental design}

\section*{Experimental design}
- We crossed RC expectation (low/high) with RC extraposition (extraposed/unextraposed)

\section*{Experimental design}
- We crossed \(R C\) expectation (low/high) with \(R C\) extraposition (extraposed/unextraposed)
- Example sentence: The chairman consulted...

\section*{Experimental design}
- We crossed RC expectation (low/high) with RC extraposition (extraposed/unextraposed)
- Example sentence: The chairman consulted...


\section*{Experimental design}
- We crossed RC expectation (low/high) with RC extraposition (extraposed/unextraposed)
- Example sentence: The chairman consulted...


\section*{Experimental design}
- We crossed RC expectation (low/high) with RC extraposition (extraposed/unextraposed)
- Example sentence: The chairman consulted...


\section*{Experimental design}
- We crossed RC expectation (low/high) with RC extraposition (extraposed/unextraposed)
- Example sentence: The chairman consulted...


\section*{Experimental design}
- We crossed RC expectation (low/high) with RC extraposition (extraposed/unextraposed)
- Example sentence: The chairman consulted...


\section*{Experimental design}
- We crossed RC expectation (low/high) with RC extraposition (extraposed/unextraposed)
- Example sentence: The chairman consulted...


\section*{Experimental design}
- We crossed RC expectation (low/high) with RC extraposition (extraposed/unextraposed)
- Example sentence: The chairman consulted...


\section*{Experimental design}
- We crossed RC expectation (low/high) with RC extraposition (extraposed/unextraposed)
- Example sentence: The chairman consulted...

Expect Extr
low \(-\underset{\text { Exp executives about the company which was making... }}{ }\)
low \(+\ldots\) the executives about the company who were making...
high - ...only those executives about the company which was making...
high \(+\ldots\) only those executives about the company who were making...
- Our prediction is an interactive effect: high RC expectation ("only those") will facilitate RC reading, but only in the extraposed condition

\section*{Experimental design}
- We crossed RC expectation (low/high) with RC extraposition (extraposed/unextraposed)
- Example sentence: The chairman consulted...

Expect Extr
low \(-\underset{\text { Exe executives about the company which was making... }}{ }\)
low \(+\quad .\). the executives about the company who were making...
high - ...only those executives about the company which was making...
high \(+\ldots\) only those executives about the company who were making...
- Our prediction is an interactive effect: high RC expectation ("only those") will facilitate RC reading, but only in the extraposed condition
- We tested this in a self-paced reading study

\section*{Online processing results}
- The difficulty pattern emerges within the RC's first 4 words:


\section*{Online processing results}
- The difficulty pattern emerges within the RC's first 4 words:


\section*{Online processing results}
- The difficulty pattern emerges within the RC's first 4 words:



High-Expectation Extraposed

High-expectation Unextraposed


Low-expectation Extraposed

Low-expectation Unextraposed

\section*{Expectations versus memory}
- Suppose you know that some event class \(X\) has to happen in the future, but you don't know:
1. When X is going to occur
2. Which member of \(X\) it's going to be
- The things \(W\) you see before \(X\) can give you hints about (1) and (2)
- If expectations facilitate processing, then seeing \(W\) should generally speed processing of \(X\)
- But you also have to keep W in memory and retrieve it at \(X\)
- This could slow processing at \(X\)


\section*{What happens in German final-verb processing?}
- Variation in pre-verbal dependency structure also found in verb-final clauses such as in German
Die Einsicht, dass der Freund
The insight, that the.NOM friend
dem Kunden das Auto aus Plastik
the. DAT client the.ACC car of plastic
verkaufte, erheiterte die Anderen.
\begin{tabular}{ll} 
sold, amused \(\quad\) the others.
\end{tabular}

\section*{What happens in German final-verb processing?}
- Variation in pre-verbal dependency structure also found in verb-final clauses such as in German
Die Einsicht, dass der Freund
The insight, that the.NOM friend
dem Kunden das Auto aus Plastik
the.DAT client the.ACC car of plastic
verkaufte, erheiterte die Anderen.
sold, amused the others.

\section*{What happens in German final-verb processing?}
\(\underset{\text {...daß dat der }}{\text { Freund }} \underset{\text { friend }}{\text { DEM }} \underset{\text { the }}{\text { Klient }}\) then \(\underset{\text { the }}{\text { dar }}\) Auto verkaufte '...that the friend sold the client a car...'

\section*{What happens in German final-verb processing?}
...daß
der that
dereung
friend \(\underset{\text { the }}{\text { DEM }} \underset{\text { client }}{\text { Kunden }}\) das Auto verkaufte '...that the friend sold the client a car...'

\section*{What happens in German final-verb processing?}

'...that the friend sold the client a car...'

\section*{What happens in German final-verb processing?}
...daß \(\overline{\text { der }} \underset{\text { freund }}{\text { Freund }} d \underset{\text { the }}{\text { DEM }} \underset{\text { client }}{\text { Kunden }}\)
das Auto
the
car
sold '...that the friend sold the client a car...'

\section*{What happens in German final-verb processing?}

'...that the friend sold the client a car...'
...daß der Freund DES Kunden das Auto verkaufte ...that the friend the client the car sold
'...that the friend of the client sold a car...'
(Konieczny \& Döring 2003)

\section*{What happens in German final-verb processing?}

'...that the friend sold the client a car...'
...daß der Freund DES Kunden das Auto verkaufte \(\ldots\)...that the friend the client the car sold
'...that the friend of the client sold a car...'
(Konieczny \& Döring 2003)

\section*{What happens in German final-verb processing?}

'...that the friend sold the client a car...'
...daß der Freund DES Kunden das Auto verkaufte \(\ldots\)...that the friend the client the car sold
'...that the friend of the client sold a car...'
(Konieczny \& Döring 2003)

\section*{What happens in German final-verb processing?}

'...that the friend sold the client a car...'
daß der Freund DES Kunden das Auto verkaufte that the friend the client the car sold
'...that the friend of the client sold a car...'
(Konieczny \& Döring 2003)

\section*{What happens in German final-verb processing?}

'...that the friend sold the client a car...'
daß der Freund DES Kunden das Auto verkaufte that the friend the client the car sold
...that the friend of the client sold a car...'
Locality: final verb read faster in DES condition
Observed: final verb read faster in DEM condition

\section*{daß}
daß





Next:

\(\mathrm{NP}_{\text {acc }}\)
\(\mathrm{NP}_{\text {dat }}\)
PP
ADVP
Verb

Next:
Nonom
\(\mathrm{NP}_{\text {acc }}\)
\(N P_{\text {dat }}\)
PP
ADVP
Verb


Next:
ID \(_{\text {nom }}\)
\(\mathrm{NP}_{\text {acc }}\)
\(N P_{\text {dat }}\)
PP
ADVP
Verb

Next:
12? \({ }^{10 m}\)
\(\mathrm{NP}_{\text {acc }}\)
\(N P_{\text {dat }}\)
PP
ADVP Verb


Next:
ID \(_{\text {Nom }}\)
\(N P_{\text {acc }}\)
NPdat
PP
ADVP
Verb

Next:
Nomm
\(\mathrm{NP}_{\text {acc }}\)
\(N P_{\text {dat }}\)
PP
ADVP Verb


Next:
Nom
\(\mathrm{NP}_{\mathrm{acc}}\)
inpdat
PP
ADVP
Verb

Next:
文品m
\(\mathrm{NP}_{\text {acc }}\)
\(N P_{\text {dat }}\)
PP
ADVP Verb


Next:
Nom
NPact
\({ }^{\mathrm{NP}} \mathrm{P}\) dat
PP
ADVP
Verb

Next:

IVPace
\(N P_{\text {dat }}\)
PP
ADVP Verb


Next:
ID \(_{\text {nom }}\)
\(\frac{\text { NPate }}{\text { NTP }}\)
PP
ADVP
Verb

Next:
Nom
ina
\(N P_{\text {dat }}\)
PP
ADVP
Verb


Next:
ID \(_{\text {nom }}\)
\(\frac{N P \text { ate }}{\text { Nidat }}\)
PP
ADVP
Verb

Next:
Nom

\(\mathrm{NP}_{\text {dat }}\)
PP
ADVP
Verb


Next:
ID \(_{\text {nom }}\)
\(\frac{N P \text { ate }}{\text { Nidat }}\)
PP
ADVP
Verb

Next:


\section*{Model results}
\begin{tabular}{lccc} 
& \begin{tabular}{c} 
Reading \\
time (ms)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{P}\left(\mathrm{w}_{\mathrm{i}}\right)\) : word \\
probability
\end{tabular} & \begin{tabular}{c} 
Locality-based \\
predictions
\end{tabular} \\
\cline { 2 - 4 } \begin{tabular}{l} 
dem Kunden \\
(dative) \\
des Kunden \\
(genitive)
\end{tabular} & 555 & \(8.38 \times 10^{-8}\) & slower \\
(gister
\end{tabular}
~30\% greater expectation in dative condition

Locality-based predictions slower
faster

once again, wrong monotonicity

\section*{References}

Bever, T. G. (1970). The cognitive basis for linguistic structures. Cognition and the development of language, 279(362), 1-61.
Frazier, L., \& Rayner, K. (1982). Making and correcting errors during sentence comprehension: Eye movements in the analysis of structurally ambiguous sentences. Cognitive psychology, 14(2), 178-210.

Hale, J. (2001, June). A probabilistic Earley parser as a psycholinguistic model. In Proceedings of the second meeting of the North American Chapter of the Association for Computational Linguistics on Language technologies (pp. 1-8). Association for Computational Linguistics.

Johnson, M. (1998). PCFG models of linguistic tree representations. Computational Linguistics, 24(4), 613-632.
Klein, D., \& Manning, C. D. (2003). Accurate unlexicalized parsing. In Proceedings of the 41st annual meeting of the association for computational linguistics.

Konieczny, L., \& Döring, P. (2003, July). Anticipation of clause-final heads: Evidence from eye-tracking and SRNs. In Proceedings of iccs/ascs (pp. 13-17).

Levy, R. (2008). Expectation-based syntactic comprehension. Cognition, 106(3), 1126-1177.
Levy, R. (2013). Memory and surprisal in human sentence comprehension. Sentence processing, 78.
Levy, R., Fedorenko, E., Breen, M., \& Gibson, E. (2012). The processing of extraposed structures in English. Cognition, 122(1), 12-36.

Staub, A. (2007). The parser doesn't ignore intransitivity, after all. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(3), 550.

Tanenhaus, M. K., Spivey-Knowlton, M. J., Eberhard, K. M., \& Sedivy, J. C. (1995). Integration of visual and linguistic information in spoken language comprehension. Science, 268(5217), 1632-1634.

\section*{Back-pocket slides beyond here}
\begin{tabular}{llr|lr|llr} 
S & \(\rightarrow\) SBAR S & 0.3 & Conj \(\rightarrow\) and & 1 & Adj & \(\rightarrow\) new & 1 \\
S & \(\rightarrow\) NP VP & 0.7 & Det \(\rightarrow\) the & 0.8 & VP & \(\rightarrow\) V NP & 0.5 \\
SBAR \(\rightarrow\) COMPL S & 0.3 & Det \(\rightarrow\) its & 0.1 & VP & \(\rightarrow \mathrm{V}\) & 0.5 \\
SBAR \(\rightarrow\) COMPL S COMMA & 0.7 & Det \(\rightarrow\) his & 0.1 & V & \(\rightarrow\) scratched & 0.25 \\
COMPL \(\rightarrow\) When & 1 & \(\mathrm{~N} \rightarrow\) dog & 0.2 & V & \(\rightarrow\) removed & 0.25 \\
NP & \(\rightarrow\) Det N & 0.6 & N & \(\rightarrow\) vet & 0.2 & V & \(\rightarrow\) arrived \\
NP & \(\rightarrow\) Det Adj N & 0.2 & N & \(\rightarrow\) assistant & 0.2 & COMMA \(\rightarrow\), & 1 \\
NP & \(\rightarrow\) NP Conj NP & 0.2 & N & \(\rightarrow\) muzzle & 0.2 & & \\
& & & \(\mathrm{~N} \rightarrow\) owner & 0.2 & & &
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline S & \(\rightarrow\) SBAR S & 0.3 & Conj \(\rightarrow\) and & 1 & Adj & \(\rightarrow\) new & 1 \\
\hline S & \(\rightarrow\) NP VP & 0.7 & Det \(\rightarrow\) the & 0.8 & VP & \(\rightarrow\) V NP & 0.5 \\
\hline SBAR & \(\rightarrow\) COMPL S & 0.3 & Det \(\rightarrow\) its & 0.1 & VP & \(\rightarrow \mathrm{V}\) & 0.5 \\
\hline SBAR & \(\rightarrow\) COMPL S COMMA & 0.7 & Det \(\rightarrow\) his & 0.1 & V & \(\rightarrow\) scratched & 0.25 \\
\hline COMPL & \(\rightarrow\) When & 1 & \(\mathrm{N} \rightarrow\) dog & 0.2 & V & \(\rightarrow\) removed & 0.25 \\
\hline NP & \(\rightarrow\) Det N & 0.6 & \(\mathrm{N} \rightarrow\) vet & 0.2 & V & \(\rightarrow\) arrived & 0.5 \\
\hline NP & \(\rightarrow\) Det Adj N & 0.2 & \(\mathrm{N} \rightarrow\) assistant & 0.2 & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{COMMA \(\rightarrow\),}} \\
\hline NP & \(\rightarrow\) NP Conj NP & 0.2 & \(\mathrm{N} \rightarrow\) muzzle & 0.2 & & & \\
\hline & & & N \(\rightarrow\) owner & 0.2 & & & \\
\hline
\end{tabular}


\section*{References}
- Saenger spaces between words
- Kucera \& Francis 1967
- Brown et al. 1990
- Garside et al. 1987
- Marcus et al. 1993```

