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• In each pair, which phrase sounds more natural?

2

hit and run run and hit

gold and silver silver and gold

deer and trees trees and deer

drink and food food and drink

bacteria and candy candy and bacteria

radio and television television and radio

shares and stocks stocks and shares

chanting and enchanting enchanting and chanting
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Ordering preferences in binomials
• Every occurring binomial is result of a speaker’s choice 

about binomial ordering

• What is the representation of these ordering preferences?
• Are these preferences also productive?

3

(US Google Books ngram counts, 1960–2012; 
~340B words) Count Count(Rev)

salt and pepper 568,951 32,082

cat and mouse 26,774 367

skirts and sweaters 1,763 1,707

bishops and seamstresses <40 <40

few and unfavorable <40 <40

principal and interest 120,034 50,032



An n-grams dataset from millions of books

4(Michel et al., 2011; the Google Books project)

(image credit Top of the List)



An n-grams dataset from millions of books

4(Michel et al., 2011; the Google Books project)

(image credit Top of the List)



An n-grams dataset from millions of books

4(Michel et al., 2011; the Google Books project)

(image credit Top of the List)



Testing some more intuitions

5(Pinker & Birdsong, 1979)



boof and kaboof kaboof and boof Word Length

Testing some more intuitions

5(Pinker & Birdsong, 1979)



boof and kaboof kaboof and boof Word Length

Testing some more intuitions

5(Pinker & Birdsong, 1979)



boof and kaboof kaboof and boof Word Length

glagy and gligy gligy and glagy Vowel Quality

Testing some more intuitions

5(Pinker & Birdsong, 1979)



boof and kaboof kaboof and boof Word Length

glagy and gligy gligy and glagy Vowel Quality

Testing some more intuitions

5(Pinker & Birdsong, 1979)



boof and kaboof kaboof and boof Word Length

glagy and gligy gligy and glagy Vowel Quality

swirp and swirr swirr and swirp # Final Consonants

Testing some more intuitions

5(Pinker & Birdsong, 1979)



boof and kaboof kaboof and boof Word Length

glagy and gligy gligy and glagy Vowel Quality

swirp and swirr swirr and swirp # Final Consonants

Testing some more intuitions

5(Pinker & Birdsong, 1979)



boof and kaboof kaboof and boof Word Length

glagy and gligy gligy and glagy Vowel Quality

swirp and swirr swirr and swirp # Final Consonants

smates and smats smats and smates Vowel Length

Testing some more intuitions

5(Pinker & Birdsong, 1979)



boof and kaboof kaboof and boof Word Length

glagy and gligy gligy and glagy Vowel Quality

swirp and swirr swirr and swirp # Final Consonants

smates and smats smats and smates Vowel Length

Testing some more intuitions

5(Pinker & Birdsong, 1979)



boof and kaboof kaboof and boof Word Length

glagy and gligy gligy and glagy Vowel Quality

swirp and swirr swirr and swirp # Final Consonants

smates and smats smats and smates Vowel Length

rasby and dasby dasby and rasby Initial Consonant 
Obstruency

Testing some more intuitions

5(Pinker & Birdsong, 1979)



boof and kaboof kaboof and boof Word Length

glagy and gligy gligy and glagy Vowel Quality

swirp and swirr swirr and swirp # Final Consonants

smates and smats smats and smates Vowel Length

rasby and dasby dasby and rasby Initial Consonant 
Obstruency

Testing some more intuitions

5(Pinker & Birdsong, 1979)



boof and kaboof kaboof and boof Word Length

glagy and gligy gligy and glagy Vowel Quality

swirp and swirr swirr and swirp # Final Consonants

smates and smats smats and smates Vowel Length

rasby and dasby dasby and rasby Initial Consonant 
Obstruency

Testing some more intuitions

5(Pinker & Birdsong, 1979)



Testing some more intuitions

6(Pinker & Birdsong, 1979)



fim - fum fum - fim

Testing some more intuitions

6(Pinker & Birdsong, 1979)



fim - fum fum - fim

begroast and begroat begroat and begroast

Testing some more intuitions

6(Pinker & Birdsong, 1979)



fim - fum fum - fim

begroast and begroat begroat and begroast

spladilk or dilk dilk or spladilk

Testing some more intuitions

6(Pinker & Birdsong, 1979)



fim - fum fum - fim

begroast and begroat begroat and begroast

spladilk or dilk dilk or spladilk

waf - paf paf - waf

Testing some more intuitions

6(Pinker & Birdsong, 1979)



fim - fum fum - fim

begroast and begroat begroat and begroast

spladilk or dilk dilk or spladilk

waf - paf paf - waf

frinning and freening freening and grinning

Testing some more intuitions

6(Pinker & Birdsong, 1979)



Ordering preferences for nonce words

7(Pinker & Birdsong, 1979)

Phonologically motivated 
order preferred

Indifference

Phonologically motivated 
order dispreferred
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• Pinker & Birdsong (1979) used nonce-word binomials to 

test phonological constraints in offline judgments:
Length (boof and kaboof; *dadabig and dabig)
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• McDonald, Bock, and Kelly (1993) tested (mostly) novel 
binomials in offline judgments and production:

Animacy
Length in production
Length in offline judgments
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What constraints predict relative preference for X and Y 
versus Y and X has been extensively investigated (Malkiel 
1959, Bolinger 1962, Cooper & Ross 1975, Gustafsson 1976, Fenk-
Oczlon 1989, Benor & Levy 2006)

• Iconic/scalar sequencing 
• what comes first happens first 
• open and read (a book); hit and run (auto); *hit and run (baseball)

• Perceptual Markedness 
• animate, concrete, positive, … ≺ inanimate, abstract, negative, …  
• deer and trees; honest and stupid; *flora and fauna

• Power 
• More culturally prioritized or “powerful” word comes first 
• clergymen and parishioners; food and drinks;               

*clerks and postmasters
9

The condiment rule 
(Cooper & Ross 1975)

Attested but violates constraint
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Ordering preferences: productive knowledge
• Formal Markedness 

• Words with more general or broader meaning distributions 
come first 

• sewing and quilting; changing and improving;*roses and flowers
• No final stress 

• The final syllable of Y in X and Y must not be stressed 
• abused and neglected; skirts and sweaters;            

*manufacture and install
• Frequency 

• The more frequent word comes first 
• bride and groom; smile and wink; *psychiatrists and patients

• Length (“Panini’s Law”) 
• The shorter word comes first (we count in syllables) 
• ask and answer; tense and irritable; *family and friends

10
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Formalizing ordering preferences
• Varieties of probabilistic grammar for forms  and 

meanings :
F

M
• Grammars over forms:  (word strings, syntax trees, …)P(F)
• Grammar over possible forms given a meaning to be 

expressed: P(F |M)
• Interpretive grammars of possible meanings given a form:

P(M |F)

11

P("X and Y" |{X, Y})

e.g., P("pepper and salt" |{salt, pepper})



A dataset of binomial expressions
Binomials are all over in naturalistic use→easy to sample:

12(Benor & Levy, 2006)

ask and answer right and good

knew and admired sit-ups and push-ups

medicines and yeast fits and starts

surprised and dubious anxiously and eagerly

rank and file congressional and presidential

thick and brown toe and fronts

understand and share startling and skillful

consider and rate carefully and prudently

commoners and kings WordPerfect and Lotus

always and everywhere milk and honey

stained and waxed improperly and unfairly

officially and publicly business and government

tear and inflame playbacks and study

By and large cold and wet

linguistic and paralinguistic softly and triumphantly

further and unnecessarily register and vote

pie and bar proposed and accepted

anger and anxiety geographical and socio-economic

follow and understand welcomed and approved

crime and sports dwindling and diminishing

poetry and non-poetry tough and dirty

immediately and directly eighth and ninth

⋮
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Probabilistic models of binomial ordering preferences

• One-constraint model, e.g., 

• In our dataset, 65% preference when conjuncts differ in 
number of syllables
• We set the relative-frequency estimate of p to 0.65
• Remember: this is the maximum likelihood estimate!

13

P ([short] and [long]|{[short],[long]}) = p

abused and neglected  ✔ 
bold and entertaining ✔ 
coughed and chattered ✔ 
medicines and yeast   ❌

people and soils      ❌  
surprised and dubious ✔ 
sought and received   ✔ 
sharp and rapid       ✔

MLE

From earlier in 
the semester!
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• When we have more constraints, we use logistic 

regression

14

P (“success”) =
e⌘

1 + e⌘

⌘ = �1X1 + �2X2 + · · ·+ �NXN

Logistic (sigmoid) 
activation function

a.k.a. mean µ
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Multiple, cross-cutting constraints
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Constraint Example Strength
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Formal markedness change and improve 1.4

Power food and drink 1

Avoid final stress confuse and disorient 0.5
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(from Morgan & Levy, 2016)
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Productive knowledge and direct experience
• Our logistic regression model isn’t perfectly predictive

• Part of this is that it fails to capture idiosyncrasy from 
direct experience

• A rational learner should…
• …apply productive knowledge in novel expressions
• …rely more on direct experience when it’s plentiful 21



Binary forced-choice experiment
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There were many bishops and seamstresses in the small town where I grew up. 

There were many seamstresses and bishops in the small town where I grew up. 

“Which sounds better?”

(Morgan & Levy, 2016, Cognition & unpublished)
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Direct experience Generative knowledge

Predictor Estimate
Direct experience 0.99*
Gen. knowledge 2.36*

Predictor Estimate
Direct experience 3.32**
Gen. knowledge 1.73  

Predictor Estimate
Direct experience 6.71***
Gen. knowledge -0.61

directness and truth

Results: attested binomials

(Morgan & Levy, 2016, Cognition & unpublished)



The idiosyncratic and the general
• We’ve seen evidence that binomial-specific ordering 

preferences have cognitive reality for speakers 
• How dramatically do these preferences depart from the 

overall generative knowledge? 
• How can we model both the generative knowledge and 

the idiosyncratic preferences simultaneously?

25
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Reality Our model

Ordering preferences depart dramatically from generative knowledge!

(Morgan & Levy, 2015)
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• We revise it to include a beta-binomial component
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P (“success”) =
e⌘
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⌘ = �1X1 + �2X2 + · · ·+ �NXN

P (“success”) = p

p ⇠ Beta

✓
e⌘

1 + e⌘
, ⌫

◆

⌘ = �1X1 + �2X2 + · · ·+ �NXN

(Morgan & Levy, 2015)
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Results: frequency sensitivity of ν
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We call this frequency-sensitive regularization 
of binomial ordering preference

(Morgan & Levy, 2015)



Results: “best-guess” of preferences
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Results: distribution of binomial prefs.

32

Reality Our OLD model

(Morgan & Levy, 2015)



Results: distribution of binomial prefs.

32

Reality

(Morgan & Levy, 2015)
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Summary for today
• In language we must often model multiple, overlapping, 

defeasible constraints that drive preferences 
• One example: linear ordering preferences 
• e.g., linear ordering preferences in the binomial construction 

• We can do this with logistic regression 
• Viewed as a Bayes Net, logistic regression imposes a 

parametric form on P(outcome|X1…m) 
• Logistic regression is extendable with a hierarchical 

component to handle item-specific idiosyncrasies 
• One version of this: beta-binomial regression

33
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