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e Every occurring binomial is result of a speaker’s choice
about binomial ordering

(US Google Books ngram counts, 1960-2012; Count Count(Rev)

~340B words)
salt and pepper 568,951 32,082
cat and mouse 26,774 367
skirts and sweaters 1,763 1,707
bishops and seamstresses <40 <40
few and unfavorable <40 <40
principal and interest 120,034 50,032

 What is the representation of these ordering preferences?
e Are these preferences also productive?
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versus Y and X has been extensively investigated (Malkiel

1959, Bolinger 1962, Cooper & Ross 1975, Gustafsson 1976, Fenk-
Oczlon 1989, Benor & Levy 2006)

e |conic/scalar seq uencing Attested but violates constraint
e what comes first happens first /
* open and read (a book); hit and run (auto); *hit and run (baseball)
e Perceptual Markedness
e animate, concrete, positive, ... < inanimate, abstract, negative, ...
e deer and trees; honest and stupid; *flora and fauna
 Power

e More culturally prioritized or “powerful” word comes first

e clergymen and parishioners; food and drinks;

*clerks and postmasters The condiment rule
(Cooper & Ross 1975) 9
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Ordering preferences: productive knowledge

Formal Markedness

e Words with more general or broader meaning distributions
come first

e sewing and quilting; changing and improving,*roses and flowers
No final stress
e The final syllable of Y in X and Y must not be stressed

e abused and neglected; skirts and sweaters;
*manufacture and install

Frequency

e The more frequent word comes first

e bride and groom; smile and wink; *psychiatrists and patients
Length ("Panini’s Law”)

e The shorter word comes first (we count in syllables)

e ask and answer; tense and irritable; *family and friends
10
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Formalizing ordering preferences

 Varieties of probabilistic grammar for forms F" and
meanings M.

o Grammars over forms: P(F’) (word strings, syntax trees, ...)

« Grammar over possible forms given a meaning to be
expressed: P(F | M)

* Interpretive grammars of possible meanings given a form:
P(M|F)

P("Xand Y"|{X,Y})

e.g., P("pepper and salt" | {salt, pepper})

11



A dataset of binomial expressions

Binomials are all over in naturalistic use—easy to sample:

ask

knew
medicines
surprised
rank

thick
understand
consider
commoners
always
stained
officially
tear

By
linguistic
further
pie

anger
follow
crime
poetry

immediately

(Benor & Levy, 2006)
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answer
admired

yeast

dubious

file

brown

share

rate

kings
everywhere
waxed
publicly
inflame

large
paralinguistic
unnecessarily
bar

anxiety
understand
sports
non-poetry

directly

right
sit-ups
fits
anxiously
congressional
toe
startling
carefully
WordPerfect
milk
improperly
business
playbacks
cold

softly
register
proposed
geographical
welcomed
dwindling
tough
eighth

and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and

and

good
push-ups
starts
eagerly
presidential
fronts
skillful
prudently
Lotus

honey
unfairly
government
study

wet
triumphantly
vote
accepted
socio-economic
approved
diminishing
dirty

ninth
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Probabilistic models of binomial ordering preferences

e One-constraint model, e.g.,

P([sHORT]| and [LONG]|{|short],[long|}) =p

* |n our dataset, 65% preference when conjuncts differ in
number of syllables

e \WWe set the relative-frequency estimate of p to 0.65
e Remember: this is the maximum likelihood estimate!

abused and neglected v people and soils X

bold and entertaining v surprised and dubious v .
coughed and chattered v/ sought and received v .=/

medicines and yeast X  sharp and rapid v

\
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Logistic Regression Model Structure Fitted model parameters

1 = BeyXsyt + BrreaXrren (Bsyt, Brreq) = (0.48,0.40)
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1+ en
a.k.a. mean u
Model predictions
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Multiple, cross-cutting constraints

Constraint Example Strength
lconic/scalar sequencing open and read 20
Perceptual markedness deer and trees 1.7
Formal markedness change and improve 1.4

Power food and drink 1

Avoid final stress confuse and disorient 0.5
Short<Long cruel and unusual 0.4
Frequent<Infrequent neatly and sweetly 0.3

(from Morgan & Levy, 2016) 18
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Productive knowledge and direct experience
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e Our logistic regression model isn’t perfectly predictive

1.0

0.8

0.6

0.4

Model proportion

0.2

0.0

00 02 04 06 08 1.0
Corpus proportion

e Part of this is that it fails to capture idiosyncrasy from
direct experience

e Arational learner should...
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Binary forced-choice experiment

“Which sounds better?”

There were many bishops and seamstresses in the small town where | grew up.

There were many seamstresses and bishops in the small town where | grew up.

(Morgan & Levy, 2016, Cognition & unpublished) 22



Results: novel binomials
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Results: attested binomials
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The idiosyncratic and the general

 We've seen evidence that binomial-specific ordering
preferences have cognitive reality for speakers

 How dramatically do these preferences depart from the
overall generative knowledge?

 How can we model both the generative knowledge and
the idiosyncratic preferences simultaneously?
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Distribution of ordering preference
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Modeling idiosyncrasy

P(“success”) =

(Morgan & Levy, 2015)
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Modeling idiosyncrasy

* Here was logistic regression:
e’l
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77:51X1—|—52X2—|—"'—|—5NXN
 We revise it to include a beta-binomial component

P(“success”) =

P(“success”) = p
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(Morgan & Levy, 2015)
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Frequency-sensitivity of binomial idiosyncrasy

(Morgan & Levy, 2015) 28



Frequency-sensitivity of binomial idiosyncrasy

v=-exp(a+B-log(M,))
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Frequency-sensitivity of binomial idiosyncrasy

Overall unordered frequency

v=-exp(a+B-log(M,))

(Morgan & Levy, 2015)
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Our complete model
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Our complete model
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Results: frequency sensitivity of v
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We call this frequency-sensitive regularization
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Results: “best-guess” of preferences
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Results: distribution of binomial prefs.
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Results: distribution of binomial prefs.
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Summary for today

In language we must often model multiple, overlapping,
defeasible constraints that drive preferences

 One example: linear ordering preferences
e e.g., linear ordering preferences in the binomial construction

We can do this with logistic regression

Viewed as a Bayes Net, logistic regression imposes a
parametric form on P(outcome|X7...m)

Logistic regression is extendable with a hierarchical
component to handle item-specific idiosyncrasies

e One version of this: beta-binomial regression

33
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