Logistic regression, the binomial construction, and a hierarchical regression model

Roger Levy
9.19: Computational Psycholinguistics
30 October 2023

Probing binomial ordering preferences

- In each pair, which phrase sounds more natural?
hit and run
gold and silver
deer and trees
drink and food
bacteria and candy
radio and television
shares and stocks
chanting and enchanting
quails and felines
run and hit
silver and gold
trees and deer food and drink
candy and bacteria
television and radio
stocks and shares
enchanting and chanting
felines and quails

Ordering preferences in binomials

- Every occurring binomial is result of a speaker's choice about binomial ordering
(US Google Books ngram counts, 1960-2012; ~340B words)

Count Count(Rev)

salt and pepper	568,951	32,082
cat and mouse	26,774	367
skirts and sweaters	1,763	1,707
bishops and seamstresses	<40	<40
few and unfavorable	<40	<40
principal and interest	120,034	50,032

- What is the representation of these ordering preferences?
- Are these preferences also productive?

An n-grams dataset from millions of books

(image credit Top of the List)

Scanning for the Digital Books Project is in progress in this Library

Thank you for your patie
Google ETBA

RESEARCHARTICLE

(Michel et al., 2011; the Google Books project)

```
Q pepper and salt,salt and pepper|
```

```
1800-2000 * English (2012) * Case-Insensitive Smoothing *
```


Testing some more intuitions

boof and kaboof kaboof and boof	
glagy and gligy	gligy and glagy
swirp and swirr swirr and swirp	
smates and smats	smats and smates
rasby and dasby dasby and rasby	

Testing some more intuitions

fim	-	fum	fum	-	fim
begroast	and	begroat	begroat	and	begroast
spladilk	or	dilk	dilk	or	spladilk
waf	-	$p a f$	$p a f$	-	waf
frinning	and	freening	freening	and	grinning

(Pinker \& Birdsong, 1979)

Ordering preferences for nonce words

Previous work: novel binomials

- Pinker \& Birdsong (1979) used nonce-word binomials to test phonological constraints in offline judgments:
\checkmark Length (boof and kaboof; *dadabig and dabig)
\checkmark Vowel Quality: high<low (gligy and glagy; *roppo and reppo)
\checkmark Vowel Length: long<short (smats and smates)
\checkmark Initial Consonant: sonorant<obstruent (haipo and daipo)
\times \# Final Consonants (skalk and skall; *flar and flard)
- McDonald, Bock, and Kelly (1993) tested (mostly) novel binomials in offline judgments and production:
\checkmark Animacy
* Length in production
\checkmark Length in offline judgments

Ordering preferences: productive knowledge

What constraints predict relative preference for X and Y versus Y and X has been extensively investigated (Malkiel 1959, Bolinger 1962, Cooper \& Ross 1975, Gustafsson 1976, FenkOczlon 1989, Benor \& Levy 2006)

- Iconic/scalar sequencing

Attested but violates constraint

- what comes first happens first
- open and read (a book); hit and run (auto); *hit and run (baseball)
- Perceptual Markedness
- animate, concrete, positive, ... < inanimate, abstract, negative, ...
- deer and trees; honest and stupid; *flora and fauna
- Power
- More culturally prioritized or "powerful" word comes first
- clergymen and parishioners; food and drinks; *clerks and postmasters The condiment rule
(Cooper \& Ross 1975)

Ordering preferences: productive knowledge

- Formal Markedness
- Words with more general or broader meaning distributions come first
- sewing and quilting; changing and improving;*roses and flowers
- No final stress
- The final syllable of Y in X and Y must not be stressed
- abused and neglected; skirts and sweaters; *manufacture and install
- Frequency
- The more frequent word comes first
- bride and groom; smile and wink; *psychiatrists and patients
- Length ("Panini's Law")
- The shorter word comes first (we count in syllables)
- ask and answer; tense and irritable; *family and friends

Formalizing ordering preferences

- Varieties of probabilistic grammar for forms F and meanings M :
- Grammars over forms: $P(F)$ (word strings, syntax trees, ...)
- Grammar over possible forms given a meaning to be expressed: $P(F \mid M)$
- Interpretive grammars of possible meanings given a form: $P(M \mid F)$

$$
P\left(" X \text { and } Y^{\prime} \mid\{X, Y\}\right)
$$

e.g., P ("pepper and salt" | \{salt, pepper\})

A dataset of binomial expressions

Binomials are all over in naturalistic use \rightarrow easy to sample:

ask	and answer
knew and admired	
medicines and yeast	
surprised and dubious	
rank and file	
thick and brown	
understand and share	
consider and rate	
commoners and kings	
always and everywhere	
stained and waxed	
officially and publicly	
tear and inflame	
By and large	
linguistic and paralinguistic	
further and unnecessarily	
pie and bar	
anger and anxiety	
follow and understand	
crime and sports	
poetry and non-poetry	

```
    right and good
    sit-ups and push-ups
    fits and starts
        anxiously and eagerly
congressional and presidential
            toe and fronts
        startling and skillful
        carefully and prudently
    WordPerfect and Lotus
            milk and honey
    improperly and unfairly
        business and government
    playbacks and study
            cold and wet
            softly and triumphantly
            register and vote
    proposed and accepted
geographical and socio-economic
    welcomed and approved
    dwindling and diminishing
        tough and dirty
        eighth and ninth
```

- One-constraint model, e.g.,

$$
P([\text { SHORT }] \text { and }[\text { LONG }] \mid\{[\text { short }],[\text { long }]\})=p
$$

- In our dataset, 65\% preference when conjuncts differ in number of syllables
- We set the relative-frequency estimate of p to 0.65
- Remember: this is the maximum likelihood estimate!
abused and neglected bold and entertaining coughed and chattered medicines and yeast
people and soils
surprised and dubious sought and received sharp and rapid

Multiple, cross-cutting constraints

- When we have more constraints, we use logistic regression

$$
\begin{aligned}
\frac{P(\text { "success" })}{\text { a.k.a. mean } \mu} & =\frac{e^{\eta}}{1+e^{\eta}} \\
\underline{\eta} & =\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+\beta_{N} X_{N}
\end{aligned}
$$

a "goodness score"

Fitting logistic regression via MLE

- With multiple model parameters, we get a likelihood surface on which we want to find the maximum
- 2-constraint example: word length and word frequency

Short<Long? Freq<Infreq?

new and modern
correct and acute
down and out
cruel and unusual
anger and spite
crochet and knit

$$
\eta=\beta_{\mathrm{Syl}} X_{S y l}+\beta_{\text {Freq }} X_{\text {Freq }}
$$

$$
P(\mathrm{~A} \text { and } \mathrm{B} \mid\{A, B\})=\frac{e^{\eta}}{1+e^{\eta}}
$$

Maximum of the likelihood surface

Model predictions from fitted parameters

Logistic Regression Model Structure

$$
\begin{aligned}
\eta & =\beta_{\text {Sy } \mid} X_{\text {Syl }}+\beta_{\text {Freq }} X_{\text {Freq }} \\
\frac{P(\mathrm{~A} \text { and } \mathrm{B} \mid\{A, B\})}{\text { a.k.a. mean } \mu} & =\frac{e^{\eta}}{1+e^{\eta}}
\end{aligned}
$$

Fitted model parameters
$\left\langle\widehat{\beta}_{\text {Syl }}, \widehat{\beta}_{\text {Freq }}\right\rangle=\langle 0.48,0.40\rangle$

Model predictions
Short<Long Freq<Infreq?
new and modern
correct and acute
down and out
cruel and unusual
anger and spite
crochet and knit
n/a
n/a

Multiple, cross-cutting constraints

$\left\{X_{i}\right\}\left[\begin{array}{ccc}\text { Constraint } & \text { Example } & \text { Strength } \\ \hline \text { Iconic/scalar sequencing } & \text { open and read } & \mathbf{2 0} \\ \text { Perceptual markedness } & \text { deer and trees } & \mathbf{1 . 7} \\ \text { Formal markedness } & \text { change and improve } & \mathbf{1 . 4} \\ \text { Power } & \text { food and drink } & \mathbf{1} \\ \text { Avoid final stress } & \text { confuse and disorient } & \mathbf{0 . 5} \\ \text { Short<Long } & \text { cruel and unusual } & \mathbf{0 . 4} \\ \text { Frequent<Infrequent } & \text { neatly and sweetly } & \mathbf{0 . 3}\end{array}\right]\left\{\beta_{i}\right\}$

As a Bayes Net:

Another source of knowledge

searmeteturted patdtoistiops OR
bishopterneds surhmereases ?
corpus prob | \{meat, potatoes\} ≈ 0.95
corpus prob | \{meat, potatoes\} ≈ 0.05

You may prefer this because you're biased toward:

- culturally more powerful/central before less powerful/central
- short before long
- frequent before infrequent
- minimizing \# consecutive unstressed syllables

Productive knowledge

OR, you may prefer it before you've heard it far more often!

Direct experience

Productive knowledge and direct experience

- Our logistic regression model isn't perfectly predictive

- Part of this is that it fails to capture idiosyncrasy from direct experience
- A rational learner should...
- ...apply productive knowledge in novel expressions
- ...rely more on direct experience when it's plentiful

Binary forced-choice experiment

"Which sounds better?"

There were many bishops and seamstresses in the small town where I grew up.

There were many seamstresses and bishops in the small town where I grew up.

Results: novel binomials

0.00
$\begin{array}{lllll}0.00 & 0.25 & 0.50 & 0.75 & 1.00\end{array}$
Model-predicted proportion
(Morgan \& Levy, 2016, Cognition \& unpublished)

Results: attested binomials

The idiosyncratic and the general

- We've seen evidence that binomial-specific ordering preferences have cognitive reality for speakers
- How dramatically do these preferences depart from the overall generative knowledge?
- How can we model both the generative knowledge and the idiosyncratic preferences simultaneously?

Distribution of ordering preference

Reality

Histogram of binomial types

Proportion of occurrences in alphabetical order

Our model
 in alphabetical order

Ordering preferences depart dramatically from generative knowledge!

Modeling idiosyncrasy

- Here was logistic regression:

$$
\begin{aligned}
P(\text { "success" }) & =\frac{e^{\eta}}{1+e^{\eta}} \\
\eta & =\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+\beta_{N} X_{N}
\end{aligned}
$$

- We revise it to include a beta-binomial component

$$
\begin{aligned}
P(\text { "success" }) & =p \\
p & \sim \operatorname{Beta}\left(\frac{e^{\eta}}{1+e^{\eta}}, \nu\right) \\
\eta & =\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+\beta_{N} X_{N}
\end{aligned}
$$

Frequency-sensitivity of binomial idiosyncrasy

$$
v=\exp \left(\alpha+\beta \cdot \log \left(M_{n}\right)\right)
$$

Our complete model

Results: frequency sensitivity of v

We call this frequency-sensitive regularization of binomial ordering preference

Results: "best-guess" of preferences

Our OLD model

Our NEW model

Results: distribution of binomial prefs.

Reality

Histogram of binomial types

Proportion of occurrences in alphabetical order
 in alphabetical order in alphabetical order

Summary for today

- In language we must often model multiple, overlapping, defeasible constraints that drive preferences
- One example: linear ordering preferences
- e.g., linear ordering preferences in the binomial construction
- We can do this with logistic regression
- Viewed as a Bayes Net, logistic regression imposes a parametric form on P (outcome $\mid X_{1} \ldots m$)
- Logistic regression is extendable with a hierarchical component to handle item-specific idiosyncrasies
- One version of this: beta-binomial regression

References

Agresti, A. (2002). Categorical data analysis. John Wiley \& Sons.
Agresti, A. (2007). An introduction to categorical data analysis (Vol. 135). New York: Wiley.
Benor, S., \& Levy, R. (2006). The chicken or the egg? A probabilistic analysis of English binomials. Language, 82(2), 233-278.
Cooper, W. E., \& Ross, J. R. (1975). World order. Papers from the parasession on functionalism, 63-111.
McDonald, J. L., Bock, K., \& Kelly, M. H. (1993). Word and world order: Semantic, phonological, and metrical determinants of serial position. Cognitive Psychology, 25(2), 188-230.
Morgan, E., \& Levy, R. (2015). Modeling idiosyncratic preferences: How generative knowledge and expression frequency jointly determine language structure. In CogSci.
Morgan, E., \& Levy, R. (2016). Abstract knowledge versus direct experience in processing of binomial expressions. Cognition, 157, 384-402.
Pinker, S., \& Birdsong, D. (1979). Speakers' sensitivity to rules of frozen word order. Journal of Verbal Learning and Verbal Behavior, 18(4), 497-508.

