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Core introductory concepts in probability theory

◮ Foundations of probability theory

◮ Joint, marginal, and conditional probability

◮ Bayes’ Rule

◮ A simple worked example for human language
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A probability space P on a sample space Ω is a function from
events E in Ω to real numbers such that the following three axioms
hold:

1. P(E ) ≥ 0 for all E ⊆ Ω (non-negativity).

2. If E1 and E2 are disjoint, then P(E1 ∪ E2) = P(E1) + P(E2)
(disjoint union).

3. P(Ω) = 1 (properness).

Note that the set-theoretic characterization of events can also be
translated into fundamental operations in Boolean logic:

Sets Boolean logic
Subset A ⊆ B A → B

Disjointness E1 ∩ E2 = ∅ ¬(E1 ∧ E2)
Union E1 ∪ E2 E1 ∨ E2



A simple example
In historical English, object NPs could appear both preverbally and
postverbally.

VP

VerbObject

VP

ObjectVerb

There is a broad cross-linguistic tendency for pronominal objects to
occur earlier on average than non-pronominal objects.

So, hypothetical probabilities from historical English:

Y :
Pronoun Not Pronoun

X :
Object Preverbal 0.224 0.655
Object Postverbal 0.014 0.107



A simple example
In historical English, object NPs could appear both preverbally and
postverbally.

VP

VerbObject

VP

ObjectVerb

There is a broad cross-linguistic tendency for pronominal objects to
occur earlier on average than non-pronominal objects.

So, hypothetical probabilities from historical English:

Y :
Pronoun Not Pronoun

X :
Object Preverbal 0.224 0.655
Object Postverbal 0.014 0.107

We will sometimes call this the joint distribution P(X ,Y ) over
two random variables—here, verb-object word order X and object
pronominality Y .
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Checking the axioms of probability

1. P(E) ≥ 0 for all E ⊂ Ω
(non-negativity).

2. If E1 and E2 are disjoint, then
P(E1 ∪ E2) = P(E1) + P(E2)
(disjoint union).

3. P(Ω) = 1 (properness).

Object
Pronoun Not Pronoun

Object Preverbal 0.224 0.655
Object Postverbal 0.014 0.107

◮ We can consider the sample space to be

Ω ={Preverbal+Pronoun,Preverbal+Not Pronoun,

Postverbal+Pronoun,Postverbal+Not Pronoun}

◮ Disjoint union tells us the probabilities of non-atomic events:
◮ If we define

E1 = {Preverbal+Pronoun,Postverbal+Not Pronoun},
then P(E1) = 0.224 + 0.107 = 0.331.

◮ Check for properness:
P(Ω) = 0.224 + 0.655 + 0.014 + 0.107 = 1
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variables X and Y , but we’re interested in the distribution
implied over one of them (here, without loss of generality, X )



Marginal probability

◮ Sometimes we have a joint distribution P(X ,Y ) over random
variables X and Y , but we’re interested in the distribution
implied over one of them (here, without loss of generality, X )

◮ The marginal probability distribution P(X ) is

P(X = x) =
∑

y

P(X = x ,Y = y)



Marginal probability: an example
Y :

Pronoun Not Pronoun

X :
Object Preverbal 0.224 0.655
Object Postverbal 0.014 0.107

Finding the marginal distribution on X :

P(X = Preverbal) = P(X = Preverbal,Y = Pronoun)

+ P(X = Preverbal,Y = Not Pronoun)

= 0.224 + 0.655

= 0.879

P(X = Postverbal) = P(X = Postverbal,Y = Pronoun)

+ P(X = Postverbal,Y = Not Pronoun)

= 0.014 + 0.107

= 0.121



Marginal probability: an example

Y :
Pronoun Not Pronoun

X :
Object Preverbal 0.224 0.655
Object Postverbal 0.014 0.107

So, the marginal distribution
on X is

P(X )

Preverbal 0.879
Postverbal 0.121

Likewise, the marginal dis-
tribution on Y is

P(Y )

Pronoun 0.238
Not Pronoun 0.762



Conditional probability

The conditional probability of event B given that A has
occurred/is known is defined as follows:

P(B|A) ≡
P(A,B)

P(A)
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Conditional Probability: an example

Y :
Pronoun Not Pronoun

X :
Object Preverbal 0.224 0.655
Object Postverbal 0.014 0.107

P(X )
Preverbal 0.879
Postverbal 0.121

P(Y )
Pronoun 0.238
Not Pronoun 0.762

How do we calculate the following?

P(Y = Pronoun|X = Postverbal) =
P(X = Postverbal,Y = Pronoun)

P(X = Postverbal)

=
0.014

0.121
= 0.116
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The chain rule
A joint probability can be rewritten as the product of marginal and
conditional probabilities:

P(E1,E2) = P(E2|E1)P(E1)

And this generalizes to more than two variables:

P(E1,E2) = P(E2|E1)P(E1)

P(E1,E2,E3) = P(E3|E1,E2)P(E2|E1)P(E1)

...
...

P(E1,E2, . . . ,En) = P(En|E1,E2, . . . ,En−1) . . .P(E2|E1)P(E1)

Breaking a joint probability down into the product of a marginal
probability and several conditional probabilities this way is called
chain rule decomposition.
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Bayes’ Rule, more closely inspected

Posterior
︷ ︸︸ ︷

P(A|B) =

Likelihood
︷ ︸︸ ︷

P(B |A)

Prior
︷ ︸︸ ︷

P(A)

P(B)
︸ ︷︷ ︸

Normalizing constant



Bayes’ Rule in action

Let me give you the same information you had before:

P(Y = Pronoun) = 0.238

P(X = Preverbal|Y = Pronoun) = 0.941

P(X = Preverbal|Y = Not Pronoun ) = 0.860

1A“transitive”verb is one that requires an object.



Bayes’ Rule in action

Let me give you the same information you had before:

P(Y = Pronoun) = 0.238

P(X = Preverbal|Y = Pronoun) = 0.941

P(X = Preverbal|Y = Not Pronoun ) = 0.860

Imagine you’re an incremental sentence processor. You encounter a
transitive verb1 but haven’t encountered the object yet. Inference
under uncertainty: How likely is it that the object is a pronoun?

1A“transitive”verb is one that requires an object.
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Normalizing constant

◮ The hardest part of using Bayes’ Rule was calculating the
normalizing constant (a.k.a. the partition function)
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Other ways of writing Bayes’ Rule

P(A|B) =

Likelihood
︷ ︸︸ ︷

P(B|A)

Prior
︷ ︸︸ ︷

P(A)

P(B)
︸ ︷︷ ︸

Normalizing constant

◮ The hardest part of using Bayes’ Rule was calculating the
normalizing constant (a.k.a. the partition function)

◮ Hence there are often two other ways we write Bayes’ Rule:
1. Emphasizing explicit marginalization:

P(A|B) =
P(B|A)P(A)

∑

a P(A = a,B)

2. Ignoring the partition function:

P(A|B) ∝ P(B|A)P(A)


