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Core introductory concepts in probability theory

» Foundations of probability theory
» Joint, marginal, and conditional probability
> Bayes' Rule

> A simple worked example for human language
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event E is a subset of a sample space Q: E C Q.
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Traditionally, probability spaces are defined in terms of sets. An
event E is a subset of a sample space Q: E C Q.

A probability space P on a sample space 2 is a function from
events E in Q to real numbers such that the following three axioms
hold:

1. P(E) >0 for all E C Q (non-negativity).

2. If E; and E; are disjoint, then P(E; U Ez) = P(E1) + P(E)

(disjoint union).

3. P(Q2) =1 (properness).
Note that the set-theoretic characterization of events can also be
translated into fundamental operations in Boolean logic:

Sets Boolean logic
Subset ACB A— B
Disjointness ExNEy =0 —(E1 A E)
Union EUE E1VE



A simple example

In historical English, object NPs could appear both preverbally and
postverbally.

VP VP
Object Verb Verb Object

There is a broad cross-linguistic tendency for pronominal objects to
occur earlier on average than non-pronominal objects.

So, hypothetical probabilities from historical English:

Y:
Pronoun Not Pronoun
Object Preverbal | 0.224 0.655
Object Postverbal | 0.014 0.107




A simple example
In historical English, object NPs could appear both preverbally and
postverbally.

VP VP
Object Verb Verb Object

There is a broad cross-linguistic tendency for pronominal objects to
occur earlier on average than non-pronominal objects.

So, hypothetical probabilities from historical English:

Y:
Pronoun Not Pronoun
Object Preverbal | 0.224 0.655
Object Postverbal | 0.014 0.107

We will sometimes call this the joint distribution P(X, Y') over
two random variables—here, verb-object word order X and object
pronominality Y.
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Checking the axioms of probability

1. P(E)>0forall EC Q

(non-negativity). Object

2. If E; and E; are disjoint, then ‘ Pronoun Not Pronoun
P(E; U E3) = P(E1) + P(E2) Object Preverbal 0.224 0.655
(disjoint union). Object Postverbal 0.014 0.107

3. P(€2) = 1 (properness).

» We can consider the sample space to be

Q ={Preverbal+Pronoun, Preverbal+Not Pronoun,
Postverbal+Pronoun, Postverbal4+Not Pronoun}

» Disjoint union tells us the probabilities of non-atomic events:
> If we define
E; = {Preverbal+Pronoun, Postverbal+Not Pronoun},
then P(E;) = 0.224 + 0.107 = 0.331.

» Check for properness:
P(2) = 0.224 + 0.655 + 0.014 + 0.107 =1
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» Sometimes we have a joint distribution P(X, Y’) over random
variables X and Y/, but we're interested in the distribution
implied over one of them (here, without loss of generality, X)



Marginal probability

» Sometimes we have a joint distribution P(X, Y’) over random
variables X and Y/, but we're interested in the distribution
implied over one of them (here, without loss of generality, X)

» The marginal probability distribution P(X) is

PX=x)=) P(X=xY=y)



Marginal probability: an example

Y:
Pronoun Not Pronoun
Object Preverbal | 0.224 0.655
Object Postverbal | 0.014 0.107

Finding the marginal distribution on X:

P(X = Preverbal) = P(X = Preverbal, Y = Pronoun)
+ P(X = Preverbal, Y = Not Pronoun)
= 0.224 + 0.655
= 0.879

P(X = Postverbal) = P(X = Postverbal, Y = Pronoun)
+ P(X = Postverbal, Y = Not Pronoun)
= 0.014 +0.107
=0.121



Marginal probability: an example

Y:
Pronoun Not Pronoun
Object Preverbal | 0.224 0.655
Object Postverbal | 0.014 0.107
So, the marginal distribution Likewise, the marginal dis-
on X is tribution on Y is
| P(X) | P(Y)

Preverbal 0.879 Pronoun 0.238
Postverbal | 0.121 Not Pronoun | 0.762



Conditional probability

The conditional probability of event B given that A has
occurred /is known is defined as follows:

P(A, B)

P(BIA) = ~p s
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Conditional Probability: an example

Y:
Pronoun Not Pronoun
Object Preverbal | 0.224 0.655
Object Postverbal | 0.014 0.107

| P(X) | P(Y)
Preverbal 0.879 Pronoun 0.238
Postverbal | 0.121 Not Pronoun | 0.762

How do we calculate the following?

P(X = Postverbal, Y = Pronoun)

P(Y = Pronoun|X = Postverbal) = P(X — Postverbal)

0.014
=——=0.11
0.121 0.116
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The chain rule

A joint probability can be rewritten as the product of marginal and
conditional probabilities:

P(E1, Ex) = P(Ez|E1)P(E1)

And this generalizes to more than two variables:

P(Ei1, Ex) = P(Ez|E1)P(E1)
P(E1, Ey, E3) = P(E3|Eq, E2)P(Ez|E1)P(Er)

P(Ei, Ep, ..., Ey) = P(Ep|E1, Epy ..o  En1) ... P(E2|E1)P(E1)

Breaking a joint probability down into the product of a marginal
probability and several conditional probabilities this way is called
chain rule decomposition.
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Bayes' Rule (Bayes' Theorem)

P(BIA)P(A)
P(B)
With extra “background” random variables /:
P(BIA, )P(A|l)
P(BII)
This “theorem” follows directly from def'n of conditional probability:

P(A|B) =

P(A|B,I) =

P(A,B) = P(BJA)P(A)
P(A,B) = P(A|B)P(B)

So
P(A|B)P(B) = P(B|A)P(A)

P(AIB)P{B} _ P(BIA)P(A)
B) P(B)




Bayes' Rule, more closely inspected

Likelihood Prior
Posterior e |
P(A

PIATE) =
N~~~

Normalizing constant




Bayes' Rule in action

Let me give you the same information you had before:

P(Y = Pronoun) = 0.238
P(X = Preverbal|Y = Pronoun) = 0.941
P(X = Preverbal| Y = Not Pronoun ) = 0.860

LA “transitive” verb is one that requires an object.



Bayes' Rule in action

Let me give you the same information you had before:

P(Y = Pronoun) = 0.238
P(X = Preverbal|Y = Pronoun) = 0.941
P(X = Preverbal| Y = Not Pronoun ) = 0.860

Imagine you're an incremental sentence processor. You encounter a
transitive verb® but haven't encountered the object yet. Inference
under uncertainty: How likely is it that the object is a pronoun?

LA “transitive” verb is one that requires an object.
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Other ways of writing Bayes' Rule

Likelihood Prior
——
P(BIA) P(A)
P(B)
~——

Normalizing constant

P(AIB) =

» The hardest part of using Bayes' Rule was calculating the
normalizing constant (a.k.a. the partition function)

» Hence there are often two other ways we write Bayes' Rule:
1. Emphasizing explicit marginalization:

PIAB) = = pa e 05

2. lgnoring the partition function:

P(A|B) « P(B|A)P(A)



