Basic Probability Theory

Roger Levy

MIT Course 9 (Brain \& Cognitive Sciences)

Core introductory concepts in probability theory

- Foundations of probability theory
- Joint, marginal, and conditional probability
- Bayes' Rule
- A simple worked example for human language

Probability spaces

Traditionally, probability spaces are defined in terms of sets. An event E is a subset of a sample space $\Omega: E \subseteq \Omega$.

Probability spaces

Traditionally, probability spaces are defined in terms of sets. An event E is a subset of a sample space $\Omega: E \subseteq \Omega$.

A probability space P on a sample space Ω is a function from events E in Ω to real numbers such that the following three axioms hold:

1. $P(E) \geq 0$ for all $E \subseteq \Omega$ (non-negativity).
2. If E_{1} and E_{2} are disjoint, then $P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)$ (disjoint union).
3. $P(\Omega)=1$ (properness).

Probability spaces

Traditionally, probability spaces are defined in terms of sets. An event E is a subset of a sample space $\Omega: E \subseteq \Omega$.

A probability space P on a sample space Ω is a function from events E in Ω to real numbers such that the following three axioms hold:

1. $P(E) \geq 0$ for all $E \subseteq \Omega$ (non-negativity).
2. If E_{1} and E_{2} are disjoint, then $P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)$ (disjoint union).
3. $P(\Omega)=1$ (properness).

Note that the set-theoretic characterization of events can also be translated into fundamental operations in Boolean logic:

	Sets	Boolean logic
Subset	$A \subseteq B$	$A \rightarrow B$
Disjointness	$E_{1} \cap E_{2}=\emptyset$	$\neg\left(E_{1} \wedge E_{2}\right)$
Union	$E_{1} \cup E_{2}$	$E_{1} \vee E_{2}$

A simple example

In historical English, object NPs could appear both preverbally and postverbally.

There is a broad cross-linguistic tendency for pronominal objects to occur earlier on average than non-pronominal objects.

So, hypothetical probabilities from historical English:

		$Y:$	
		Pronoun	Not Pronoun
$X:$	Object Preverbal	0.224	0.655
	Object Postverbal	0.014	0.107

A simple example

In historical English, object NPs could appear both preverbally and postverbally.

There is a broad cross-linguistic tendency for pronominal objects to occur earlier on average than non-pronominal objects.

So, hypothetical probabilities from historical English:

		$Y:$	
		Pronoun	Not Pronoun
$X:$	Object Preverbal	0.224	0.655
	Object Postverbal	0.014	0.107

We will sometimes call this the joint distribution $P(X, Y)$ over two random variables-here, verb-object word order X and object pronominality Y.

Checking the axioms of probability

1. $P(E) \geq 0$ for all $E \subset \Omega$ (non-negativity).
2. If E_{1} and E_{2} are disjoint, then $P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)$ (disjoint union).
3. $P(\Omega)=1$ (properness).

- We can consider the sample space to be

$$
\begin{aligned}
\Omega= & \{\text { Preverbal+Pronoun, Preverbal+Not Pronoun }, \\
& \text { Postverbal+Pronoun, Postverbal+Not Pronoun }\}
\end{aligned}
$$

Checking the axioms of probability

1．$P(E) \geq 0$ for all $E \subset \Omega$ （non－negativity）．
2．If E_{1} and E_{2} are disjoint，then $P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)$ （disjoint union）．
3．$P(\Omega)=1$（properness）．
－We can consider the sample space to be

$$
\begin{aligned}
\Omega= & \{\text { Preverbal }+ \text { Pronoun }, \text { Preverbal }+ \text { Not Pronoun }, \\
& \text { Postverbal }+ \text { Pronoun }, \text { Postverbal }+ \text { Not Pronoun }\}
\end{aligned}
$$

－Disjoint union tells us the probabilities of non－atomic events：

Checking the axioms of probability

1. $P(E) \geq 0$ for all $E \subset \Omega$ (non-negativity).
2. If E_{1} and E_{2} are disjoint, then $P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)$ (disjoint union).
3. $P(\Omega)=1$ (properness).

	Object	
	Pronoun	Not Pronoun
Object Preverbal	0.224	0.655
Object Postverbal	0.014	0.107

- We can consider the sample space to be
$\Omega=\{$ Preverbal+Pronoun, Preverbal+Not Pronoun, Postverbal+Pronoun, Postverbal+Not Pronoun $\}$
- Disjoint union tells us the probabilities of non-atomic events:
- If we define $E_{1}=\{$ Preverbal + Pronoun, Postverbal + Not Pronoun $\}$, then $P\left(E_{1}\right)=0.224+0.107=0.331$.

Checking the axioms of probability

1. $P(E) \geq 0$ for all $E \subset \Omega$ (non-negativity).
2. If E_{1} and E_{2} are disjoint, then $P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)$ (disjoint union).
3. $P(\Omega)=1$ (properness).

	Object	
	Pronoun	Not Pronoun
Object Preverbal	0.224	0.655
Object Postverbal	0.014	0.107

- We can consider the sample space to be
$\Omega=\{$ Preverbal+Pronoun, Preverbal+Not Pronoun, Postverbal+Pronoun, Postverbal+Not Pronoun $\}$
- Disjoint union tells us the probabilities of non-atomic events:
- If we define $E_{1}=\{$ Preverbal + Pronoun, Postverbal + Not Pronoun $\}$, then $P\left(E_{1}\right)=0.224+0.107=0.331$.
- Check for properness:

$$
P(\Omega)=0.224+0.655+0.014+0.107=1
$$

Marginal probability

- Sometimes we have a joint distribution $P(X, Y)$ over random variables X and Y, but we're interested in the distribution implied over one of them (here, without loss of generality, X)

Marginal probability

- Sometimes we have a joint distribution $P(X, Y)$ over random variables X and Y, but we're interested in the distribution implied over one of them (here, without loss of generality, X)
- The marginal probability distribution $P(X)$ is

$$
P(X=x)=\sum_{y} P(X=x, Y=y)
$$

Marginal probability: an example

		$Y:$	
		Pronoun	Not Pronoun
$X:$	Object Preverbal	0.224	0.655
	Object Postverbal	0.014	0.107

Finding the marginal distribution on X :

$$
\begin{aligned}
P(X=\text { Preverbal })= & P(X=\text { Preverbal, } Y=\text { Pronoun }) \\
& +P(X=\text { Preverbal, } Y=\text { Not Pronoun }) \\
= & 0.224+0.655 \\
= & 0.879
\end{aligned}
$$

$$
\begin{aligned}
P(X=\text { Postverbal })= & P(X=\text { Postverbal, } Y=\text { Pronoun }) \\
& +P(X=\text { Postverbal, } Y=\text { Not Pronoun }) \\
& =0.014+0.107 \\
= & 0.121
\end{aligned}
$$

Marginal probability: an example

			$Y:$
		Pronoun	Not Pronoun
$X:$	Object Preverbal	0.224	0.655
	Object Postverbal	0.014	0.107

So, the marginal distribution on X is

	$P(X)$
Preverbal	0.879
Postverbal	0.121

Likewise, the marginal distribution on Y is

	$P(Y)$
Pronoun	0.238
Not Pronoun	0.762

Conditional probability

The conditional probability of event B given that A has occurred/is known is defined as follows:

$$
P(B \mid A) \equiv \frac{P(A, B)}{P(A)}
$$

Conditional Probability: an example

		$Y:$ $X:$	
Object Preverbal	0.224	0.655	
	Object Postverbal	0.014	0.107

	$P(X)$
Preverbal	0.879
Postverbal	0.121

	$P(Y)$
Pronoun	0.238
Not Pronoun	0.762

Conditional Probability: an example

		$Y:$ $X:$	
Object Preverbal	Pronoun	Not Pronoun	
	Object Postverbal	0.224	0.655
		0.14	07

	$P(X)$
Preverbal	0.879
Postverbal	0.121

	$P(Y)$
Pronoun	0.238
Not Pronoun	0.762

How do we calculate the following?

$$
P(Y=\operatorname{Pronoun} \mid X=\text { Postverbal })
$$

Conditional Probability: an example

		$Y:$ $X:$	
Object Preverbal	Pronoun	Not Pronoun	
	Object Postverbal	0.224	0.655
		0.14	07

	$P(X)$
Preverbal	0.879
Postverbal	0.121

	$P(Y)$
Pronoun	0.238
Not Pronoun	0.762

How do we calculate the following?

$$
P(Y=\operatorname{Pronoun} \mid X=\text { Postverbal })
$$

Conditional Probability: an example

		$Y:$ 	
	Pronoun	Not Pronoun	
	Object Preverbal Postverbal	0.224	0.655
	0.014	0.107	

	$P(X)$
Preverbal	0.879
Postverbal	0.121

	$P(Y)$
Pronoun	0.238
Not Pronoun	0.762

How do we calculate the following?

$$
\begin{aligned}
P(Y=\text { Pronoun } \mid X=\text { Postverbal }) & =\frac{P(X=\text { Postverbal, } Y=\text { Pronoun })}{P(X=\text { Postverbal })} \\
& =\frac{0.014}{0.121}=0.116
\end{aligned}
$$

The chain rule

A joint probability can be rewritten as the product of marginal and conditional probabilities:

$$
P\left(E_{1}, E_{2}\right)=P\left(E_{2} \mid E_{1}\right) P\left(E_{1}\right)
$$

The chain rule

A joint probability can be rewritten as the product of marginal and conditional probabilities:

$$
P\left(E_{1}, E_{2}\right)=P\left(E_{2} \mid E_{1}\right) P\left(E_{1}\right)
$$

And this generalizes to more than two variables:

The chain rule

A joint probability can be rewritten as the product of marginal and conditional probabilities:

$$
P\left(E_{1}, E_{2}\right)=P\left(E_{2} \mid E_{1}\right) P\left(E_{1}\right)
$$

And this generalizes to more than two variables:

$$
P\left(E_{1}, E_{2}\right)=P\left(E_{2} \mid E_{1}\right) P\left(E_{1}\right)
$$

The chain rule

A joint probability can be rewritten as the product of marginal and conditional probabilities:

$$
P\left(E_{1}, E_{2}\right)=P\left(E_{2} \mid E_{1}\right) P\left(E_{1}\right)
$$

And this generalizes to more than two variables:

$$
\begin{aligned}
P\left(E_{1}, E_{2}\right) & =P\left(E_{2} \mid E_{1}\right) P\left(E_{1}\right) \\
P\left(E_{1}, E_{2}, E_{3}\right) & =P\left(E_{3} \mid E_{1}, E_{2}\right) P\left(E_{2} \mid E_{1}\right) P\left(E_{1}\right)
\end{aligned}
$$

The chain rule

A joint probability can be rewritten as the product of marginal and conditional probabilities:

$$
P\left(E_{1}, E_{2}\right)=P\left(E_{2} \mid E_{1}\right) P\left(E_{1}\right)
$$

And this generalizes to more than two variables:

$$
\begin{aligned}
P\left(E_{1}, E_{2}\right) & =P\left(E_{2} \mid E_{1}\right) P\left(E_{1}\right) \\
P\left(E_{1}, E_{2}, E_{3}\right) & =P\left(E_{3} \mid E_{1}, E_{2}\right) P\left(E_{2} \mid E_{1}\right) P\left(E_{1}\right)
\end{aligned}
$$

The chain rule

A joint probability can be rewritten as the product of marginal and conditional probabilities:

$$
P\left(E_{1}, E_{2}\right)=P\left(E_{2} \mid E_{1}\right) P\left(E_{1}\right)
$$

And this generalizes to more than two variables:

$$
\begin{aligned}
P\left(E_{1}, E_{2}\right) & =P\left(E_{2} \mid E_{1}\right) P\left(E_{1}\right) \\
P\left(E_{1}, E_{2}, E_{3}\right) & =P\left(E_{3} \mid E_{1}, E_{2}\right) P\left(E_{2} \mid E_{1}\right) P\left(E_{1}\right)
\end{aligned}
$$

The chain rule

A joint probability can be rewritten as the product of marginal and conditional probabilities:

$$
P\left(E_{1}, E_{2}\right)=P\left(E_{2} \mid E_{1}\right) P\left(E_{1}\right)
$$

And this generalizes to more than two variables:

$$
\begin{aligned}
P\left(E_{1}, E_{2}\right) & =P\left(E_{2} \mid E_{1}\right) P\left(E_{1}\right) \\
P\left(E_{1}, E_{2}, E_{3}\right) & =P\left(E_{3} \mid E_{1}, E_{2}\right) P\left(E_{2} \mid E_{1}\right) P\left(E_{1}\right) \\
\vdots & \vdots \\
P\left(E_{1}, E_{2}, \ldots, E_{n}\right) & =P\left(E_{n} \mid E_{1}, E_{2}, \ldots, E_{n-1}\right) \ldots P\left(E_{2} \mid E_{1}\right) P\left(E_{1}\right)
\end{aligned}
$$

The chain rule

A joint probability can be rewritten as the product of marginal and conditional probabilities:

$$
P\left(E_{1}, E_{2}\right)=P\left(E_{2} \mid E_{1}\right) P\left(E_{1}\right)
$$

And this generalizes to more than two variables:

$$
\begin{aligned}
P\left(E_{1}, E_{2}\right) & =P\left(E_{2} \mid E_{1}\right) P\left(E_{1}\right) \\
P\left(E_{1}, E_{2}, E_{3}\right) & =P\left(E_{3} \mid E_{1}, E_{2}\right) P\left(E_{2} \mid E_{1}\right) P\left(E_{1}\right) \\
\vdots & \vdots \\
P\left(E_{1}, E_{2}, \ldots, E_{n}\right) & =P\left(E_{n} \mid E_{1}, E_{2}, \ldots, E_{n-1}\right) \ldots P\left(E_{2} \mid E_{1}\right) P\left(E_{1}\right)
\end{aligned}
$$

Breaking a joint probability down into the product of a marginal probability and several conditional probabilities this way is called chain rule decomposition.

Bayes' Rule (Bayes' Theorem)

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Bayes' Rule (Bayes' Theorem)

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

With extra "background" random variables I :

$$
P(A \mid B, I)=\frac{P(B \mid A, I) P(A \mid I)}{P(B \mid I)}
$$

Bayes' Rule (Bayes' Theorem)

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

With extra "background" random variables I :

$$
P(A \mid B, I)=\frac{P(B \mid A, I) P(A \mid I)}{P(B \mid I)}
$$

This "theorem" follows directly from def'n of conditional probability:

$$
P(A, B)=P(B \mid A) P(A)
$$

Bayes' Rule (Bayes' Theorem)

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

With extra "background" random variables I :

$$
P(A \mid B, I)=\frac{P(B \mid A, I) P(A \mid I)}{P(B \mid I)}
$$

This "theorem" follows directly from def'n of conditional probability:

$$
\begin{aligned}
& P(A, B)=P(B \mid A) P(A) \\
& P(A, B)=P(A \mid B) P(B)
\end{aligned}
$$

Bayes' Rule (Bayes' Theorem)

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

With extra "background" random variables I :

$$
P(A \mid B, I)=\frac{P(B \mid A, I) P(A \mid I)}{P(B \mid I)}
$$

This "theorem" follows directly from def'n of conditional probability:

$$
\begin{aligned}
& P(A, B)=P(B \mid A) P(A) \\
& P(A, B)=P(A \mid B) P(B)
\end{aligned}
$$

So

$$
P(A \mid B) P(B)=P(B \mid A) P(A)
$$

Bayes' Rule (Bayes' Theorem)

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

With extra "background" random variables I :

$$
P(A \mid B, I)=\frac{P(B \mid A, I) P(A \mid I)}{P(B \mid I)}
$$

This "theorem" follows directly from def'n of conditional probability:

$$
\begin{aligned}
& P(A, B)=P(B \mid A) P(A) \\
& P(A, B)=P(A \mid B) P(B)
\end{aligned}
$$

So

$$
\begin{aligned}
& P(A \mid B) P(B)=P(B \mid A) P(A) \\
& \frac{P(A \mid B) P(B)}{P(B)}=\frac{P(B \mid A) P(A)}{P(B)}
\end{aligned}
$$

Bayes' Rule (Bayes' Theorem)

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

With extra "background" random variables I :

$$
P(A \mid B, I)=\frac{P(B \mid A, I) P(A \mid I)}{P(B \mid I)}
$$

This "theorem" follows directly from def'n of conditional probability:

$$
\begin{aligned}
& P(A, B)=P(B \mid A) P(A) \\
& P(A, B)=P(A \mid B) P(B)
\end{aligned}
$$

So

$$
\begin{aligned}
& P(A \mid B) P(B)=P(B \mid A) P(A) \\
& \frac{P(A \mid B) P(B)}{P(B)}=\frac{P(B \mid A) P(A)}{P(B)}
\end{aligned}
$$

Bayes' Rule, more closely inspected

Bayes＇Rule in action

Let me give you the same information you had before：

$$
\begin{aligned}
P(Y=\text { Pronoun }) & =0.238 \\
P(X=\text { Preverbal } \mid Y=\text { Pronoun }) & =0.941 \\
P(X=\text { Preverbal } \mid Y=\text { Not Pronoun }) & =0.860
\end{aligned}
$$

${ }^{1}$ A＂transitive＂verb is one that requires an object．

Bayes' Rule in action

Let me give you the same information you had before:

$$
\begin{aligned}
P(Y=\text { Pronoun }) & =0.238 \\
P(X=\text { Preverbal } \mid Y=\text { Pronoun }) & =0.941 \\
P(X=\text { Preverbal } \mid Y=\text { Not Pronoun }) & =0.860
\end{aligned}
$$

Imagine you're an incremental sentence processor. You encounter a transitive verb ${ }^{1}$ but haven't encountered the object yet. Inference under uncertainty: How likely is it that the object is a pronoun?

[^0]
Bayes Rule in Action

$$
\begin{array}{r}
P(Y=\text { Pronoun })=0.238 \\
P(X=\text { Preverbal } \mid Y=\text { Pronoun })=0.941 \\
P(X=\text { Preverbal } \mid Y=\text { Not Pronoun })=0.860
\end{array}
$$

$$
P(Y=\operatorname{Pron} \mid X=\text { PostV })
$$

Bayes Rule in Action

$$
\left.\begin{array}{c}
P(Y=\text { Pronoun })=0.238 \\
P(X=\text { Preverbal } \mid Y=\text { Pronoun })=0.941 \\
P(X=\text { Preverbal } \mid Y=\text { Not Pronoun })=0.860
\end{array}\right] \begin{aligned}
P(Y=\text { Pron } \mid X=\text { Post } \mathbf{V})=\frac{P(X=\text { Post } V \mid Y=\text { Pron }) P(Y=\text { Pron })}{P(X=\text { PostV })}
\end{aligned}
$$

Bayes Rule in Action

$$
\begin{aligned}
P(Y=\text { Pronoun }) & =0.238 \\
P(X=\text { Preverbal } \mid Y=\text { Pronoun }) & =0.941 \\
P(X=\text { Preverbal } \mid Y=\text { Not Pronoun }) & =0.860
\end{aligned}
$$

$$
\begin{aligned}
P(Y=\operatorname{Pron} \mid X=\mathbf{P o s t} \mathbf{V}) & =\frac{P(X=\mathbf{P o s t} \mathbf{V} \mid Y=\text { Pron }) P(Y=\text { Pron })}{P(X=\text { PostV })} \\
& =\frac{P(X=\mathbf{P o s t} V \mid Y=\text { Pron }) P(Y=\text { Pron })}{\sum_{y} P(X=\operatorname{Post} V, Y=y)}
\end{aligned}
$$

Bayes Rule in Action

$$
\begin{aligned}
P(Y=\text { Pronoun }) & =0.238 \\
P(X=\text { Preverbal } \mid Y=\text { Pronoun }) & =0.941 \\
P(X=\text { Preverbal } \mid Y=\text { Not Pronoun }) & =0.860
\end{aligned}
$$

$$
\begin{aligned}
P(Y=\mathbf{P r o n} \mid X=\mathbf{P o s t} V) & =\frac{P(X=\mathbf{P o s t} V \mid Y=\text { Pron }) P(Y=\text { Pron })}{P(X=\text { PostV })} \\
& =\frac{P(X=\mathbf{P o s t} V \mid Y=\text { Pron }) P(Y=\text { Pron })}{\sum_{y} P(X=\text { PostV }, Y=y)} \\
& =\frac{P(X=\text { PostV } \mid Y=\text { Pron }) P(Y=\text { Pron })}{\sum_{y} P(X=\text { PostV } \mid Y=y) P(Y=y)}
\end{aligned}
$$

Bayes Rule in Action

$$
\begin{aligned}
P(Y=\text { Pronoun }) & =0.238 \\
P(X=\text { Preverbal } \mid Y=\text { Pronoun }) & =0.941 \\
P(X=\text { Preverbal } \mid Y=\text { Not Pronoun }) & =0.860
\end{aligned}
$$

$$
\begin{aligned}
& P(Y=\mathbf{P r o n} \mid X=\mathbf{P o s t} \mathbf{V})=\frac{P(X=\mathbf{P o s t} V \mid Y=\mathbf{P r o n}) P(Y=\text { Pron })}{P(X=\operatorname{Post} V)} \\
& =\frac{P(X=\text { Post } V \mid Y=\text { Pron }) P(Y=\text { Pron })}{\sum_{y} P(X=\text { Post } V, Y=y)} \\
& =\frac{P(X=\text { Post } V \mid Y=\text { Pron }) P(Y=\text { Pron })}{\sum_{y} P(X=\text { Post } V \mid Y=y) P(Y=y)} \\
& =\frac{P(X=\text { Post } V \mid Y=\text { Pron }) P(Y=\text { Pron })}{\mathrm{P}(\text { Post } \mid \text { Pron }) \mathrm{P}(\text { Pron })+\mathrm{P}(\text { Post } \mid \text { NotPron }) \mathrm{P}(\text { NotPron })}
\end{aligned}
$$

Bayes Rule in Action

$$
\begin{aligned}
P(Y=\text { Pronoun }) & =0.238 \\
P(X=\text { Preverbal } \mid Y=\text { Pronoun }) & =0.941 \\
P(X=\text { Preverbal } \mid Y=\text { Not Pronoun }) & =0.860
\end{aligned}
$$

$$
\begin{aligned}
& P(Y=\operatorname{Pron} \mid X=\mathbf{P o s t} \mathbf{V})=\frac{P(X=\operatorname{Post} \mathbf{V} \mid Y=\operatorname{Pron}) P(Y=\text { Pron })}{P(X=\operatorname{Post} \mathbf{V})} \\
& =\frac{P(X=\text { Post } V \mid Y=\text { Pron }) P(Y=\text { Pron })}{\sum_{y} P(X=\text { Post } V, Y=y)} \\
& =\frac{P(X=\operatorname{Post} \mathbf{V} \mid Y=\text { Pron }) P(Y=\text { Pron })}{\sum_{y} P(X=\text { Post } V \mid Y=y) P(Y=y)} \\
& =\frac{P(X=\text { PostV } \mid Y=\text { Pron }) P(Y=\text { Pron })}{\mathrm{P}(\text { PostV } \mid \text { Pron }) \mathrm{P}(\text { Pron })+\mathrm{P}(\text { PostV } \mid \text { NotPron }) \mathrm{P}(\text { NotPron })} \\
& =\frac{(1-0.941) \times 0.238}{(1-0.941) \times 0.238+(1-0.860) \times(1-0.238)}
\end{aligned}
$$

Bayes Rule in Action

$$
\begin{aligned}
P(Y=\text { Pronoun }) & =0.238 \\
P(X=\text { Preverbal } \mid Y=\text { Pronoun }) & =0.941 \\
P(X=\text { Preverbal } \mid Y=\text { Not Pronoun }) & =0.860
\end{aligned}
$$

$$
\begin{aligned}
P(Y=\text { Pron } \mid X=\text { Post } V) & =\frac{P(X=\text { Post } V \mid Y=\text { Pron }) P(Y=\text { Pron })}{P(X=\text { PostV })} \\
& =\frac{P(X=\mathbf{P o s t V} \mid Y=\text { Pron }) P(Y=\text { Pron })}{\sum_{y} P(X=\text { PostV }, Y=y)} \\
& =\frac{P(X=\mathbf{P o s t} \mathbf{V} \mid Y=\text { Pron }) P(Y=\text { Pron })}{\sum_{y} P(X=\text { PostV } \mid Y=y) P(Y=y)} \\
& =\frac{P(X=\mathbf{P o s t} \mathbf{V} \mid Y=\text { Pron }) P(Y=\text { Pron })}{\mathrm{P}(\text { PostV } \mid \text { Pron }) \mathrm{P}(\text { Pron })+\mathrm{P}(\text { PostV } \mid \text { NotPron }) \mathrm{P}(\text { NotPron })} \\
& =\frac{(1-0.941) \times 0.238}{(1-0.941) \times 0.238+(1-0.860) \times(1-0.238)} \\
& =0.116
\end{aligned}
$$

Other ways of writing Bayes' Rule

$$
P(A \mid B)=\frac{\overbrace{P(B \mid A)}^{\text {Likelihood }} \overbrace{P(A)}^{\text {Prior }}}{\underbrace{P(B)}_{\text {Normalizing constant }}}
$$

- The hardest part of using Bayes' Rule was calculating the normalizing constant (a.k.a. the partition function)

Other ways of writing Bayes＇Rule

$$
P(A \mid B)=\frac{\overbrace{P(B \mid A)}^{\text {Likelihood }} \overbrace{P(A)}^{\text {Prior }}}{\underbrace{P(B)}_{\text {Normalizing constant }}}
$$

－The hardest part of using Bayes＇Rule was calculating the normalizing constant（a．k．a．the partition function）
－Hence there are often two other ways we write Bayes＇Rule：

Other ways of writing Bayes' Rule

$$
P(A \mid B)=\frac{\overbrace{P(B \mid A)}^{\text {Likelihood }} \overbrace{P(A)}^{\text {Prior }}}{\underbrace{P(B)}_{\text {Normalizing constant }}}
$$

- The hardest part of using Bayes' Rule was calculating the normalizing constant (a.k.a. the partition function)
- Hence there are often two other ways we write Bayes' Rule: 1. Emphasizing explicit marginalization:

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{\sum_{a} P(A=a, B)}
$$

Other ways of writing Bayes' Rule

$$
P(A \mid B)=\frac{\overbrace{P(B \mid A)}^{\text {Likelihood }} \overbrace{P(A)}^{\text {Prior }}}{\underbrace{P(B)}_{\text {Normalizing constant }}}
$$

- The hardest part of using Bayes' Rule was calculating the normalizing constant (a.k.a. the partition function)
- Hence there are often two other ways we write Bayes' Rule:

1. Emphasizing explicit marginalization:

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{\sum_{a} P(A=a, B)}
$$

2. Ignoring the partition function:

$$
P(A \mid B) \propto P(B \mid A) P(A)
$$

[^0]: ${ }^{1} \mathrm{~A}$ "transitive" verb is one that requires an object.

