
Finite State Models and Natural Language

Roger Levy

Massachusetts Institute of Technology
Department of Brain & Cognitive Sciences

Overview

These slides cover:

I Regular expressions (a minimal summary)

I A bit about phonotactics

I Finite-state automata

I The idea of writing grammar fragments

I Regular languages

I A bit about finite-state transducers

I Weak vs. Strong Generative Capacity

I The limits of finite-state models for natural language syntax

Regular expressions – a minimal characterization

I Given a finite alphabet Σ, any character sequence from Σ ∪ {*, |, (,)}
with matching parentheses is a valid regular expression.

I For example, if Σ = {a, b}, the following are valid regular expressions:

a bab b*a

a* ab* (ab)*

(a|b) (a*|b) (ab)|(b(a*))

I The empty string is also a valid regular expression

I Semantics of what each part of a regular expression matches:

The empty string A zero-character sequence
Any character from Σ That character
Concatenation: XY what X matches followed by what Y matches
X* 0 or more repetitions of X (* is the “Kleene star”)
X|Y X or Y
() determine operator precedence

Additional machinery in many regex implementations

I Partial (cf. total) matching (e.g., Python’s re’s search() vs.
fullmatch())

I Conveniences that don’t change formal power:
[] Character classes, e.g. [a-f] for a|b|c|d|e|f
^ and $ Anchors requiring certain in-string position for partial matches
X+ “Kleene plus”, equiv. XX*: 1+ repetitions of X
X{m,n} Counters: between m and n repetitions of X
. Wildcard (matches any symbol; a kind of character class)

I Lookahead and lookbehind guide the regex engine’s matcher:
X(?=Y) Require that Y follows X in order to match X
X(?!Y) Require that Y not follow X in order to match X

I One common extension does change formal power: backreferences.
(X)Y \1 X then Y then a repetition of the string matching X , e.g.:
([ab]*)b\1 Matches b, aba, bbb, abbab, . . . ; doesn’t match abb, abbba, . . .

Matching regexes with arbitrary backreferences is NP-complete (Aho,
1990)!

I Here, we cover regexes without backreferences.

To finite-state automata through phonotactics

I Phonotactics are the language-specific rules of what sound sequences
constitute licit vs. illicit wordforms

I Example:

prick A word of English
plick Not a word of English, but could in principle be one
pnick Not a word of English, and “could not be”

Language specificity of phonotactic rules

I zvoon (in the International Phonetic Alphabet: /zvun/) would be
hard-pressed to be a word of English

I But it would be a very natural word in Russian!

I The individual sounds are all in English:

z as in “zebra”
v as in “victory”
u as in “hoop”
n as in “can”

but the arrangement into this sequence is not OK in English

I Can you think of similar examples involving English and another
language you know?

The grammar of English onsets

I Basic syllable structure of English, e.g. for captain /kæpt@n/:
σ

Onset

k

Nucleus

æ

Coda

p

σ

Onset

t

Nucleus

@

Coda

n

I The badness of zvoon has to do with the onset
I Some examples of prohibitions on English onsets:

I sonorants (nasals like n, and liquids like l and r) can appear only at the
end of an onset, e.g.:

OK: net, ring, bring, plain
Not OK: nzap, rwell, lroom

I The only fully acceptable sound that can precede a nasal or obstruent
(stops like p, fricatives like z, and affricates like ch /tS/) is s, e.g.:

OK: spill, snout
Not OK: shpill, znout

I Note that these prohibitions vary in generality!

Sound classes in phonology

I Similar to character classes in regexes, e.g., [A-Fa-f], phonologists
write sound classes using phonological features

I For any feature, a phoneme’s value can be +, −, or unspecified

Feature + phonemes − phonemes
Voice b, d, D (first sound of the), g, v, z, j,

Z (second consonant of measure)
tS (“ch”), f, k, p, s, S
(“sh”), t, T (“th”), h

Labial b, p, f, v, m, w none
Sonorant l, m, n, N (“ng”), r, w, y all others
Strident tS, j, s, S, z, Z d, D, t, T, n, l, r
Continuant D, f, s, S, T, v, z, Z, h b, tS, d, g, j, k, p, t

I We can now write phonotactic prohibitions as little regular expressions:

Constraint Regex Explanation
∗[+Son

][]
[mnNlrwy]. Sonorants may only be onset-final

∗[][
+Cont

]
.[DfsSTvzZh] Fricatives can’t have anything before them

∗
[

+Cont
+Voice

][]
[DvzZ]. Voiced fricatives can’t precede anything

Toward a unified phonotactic grammar

Constraint Regex Explanation
∗[+Son

][]
[mnNlrwy]. Sonorants may only be onset-final

∗[][
+Cont

]
.[DfsSTvzZh] Fricatives can’t have anything before them

∗
[

+Cont
+Voice

][]
[DvzZ]. Voiced fricatives can’t precede anything

I We can write each phonotactic constraint as a simple regex

I How can we combine a set of phonotactic constraints into a unified
phonotactic grammar?

I A natural way to do this turns out to be through the formalism of
finite-state machines

Finite-state automata: an example

I Example finite-state automaton (FSA):

q0start q1
a

b

I Accepts all and only those strings that begin with a and then have
nothing but b

I More precisely, it accepts all and only the strings accepted by the regular
expression ab*

Finite-state automata, formally defined

A finite-state automaton consists of:

I A finite set of N states Q = {q0, q1, . . . , qN−1}, with q0 the start state;

I A finite input alphabet Σ of symbols (the symbols that comprise strings, like
in regexes);

I A set of final states F ⊆ Q;

I The transition relation ∆, comprised of a finite set of transitions each of

the form q
i
 q′, with i ∈ Σ or i = ε (ε is the empty string). Informally, “if

you are in state q and have input i available next, you can consume it and
move to state q′”.

Equivalent specifications of the same FSA

q0start q1
a

b

Q = {q0, q1}
Σ = {a, b}
F = {q1}

∆ = {q0
a
 q1, q1

b
 q1}

Acceptance criterion in FSAs (slightly informal)

I An FSA accepts a string if you can recursively apply the transition relation to
the current state (initializing at q0) and the current position in the string
(initializing at the beginning of the string) and get to a final state with the
string completely consumed.

I If the sequence of transitions is of length N we may depict a path through the
automaton that accepts w as

q0
i1
1

i2
2
. . .

iN−1

N−1

iN
N

q∗

where q∗ ∈ F and i1, . . . , iN are the appropriately sequenced inputs from w.

q0start q0start q1q1

aa

bb

aa

|a|b|b| Accepted
|b Rejected
|a|b|a| Rejected

I For every regex there is an FSA that accepts all and only the strings the
regex matches, and vice versa!

Deterministic versus non-deterministic FSAs

I In a deterministic finite-state automaton (DFSA):
I Each transition’s input symbol i must be a symbol in Σ, and cannot be ε
I The transition relation is a function.

I As a result, in a deterministic FSA, there is never more than one
transition possible given a state and the current position in the string.

I In a non-deterministic finite-state automaton (NFSA), neither of those
constraints hold.

DFSA Equivalent NFSA

q0start q1 q2

q3

b c

da
b

q0start

q1 q2 q3

a ε

b c

d

Another equivalent DFSA/NFSA pair

q0start

q1 q2 q3

q4 q5 q6

q7

t

i n

c

a b

i

n

q0start

q1 q2 q3

q4 q5 q6

t

i n

c

a b

b

Checking string acceptance/rejection in an NFSA

q0start

q1 q2 q3

q4 q5 q6

t

i n

c

a b

b

q5 c a|b...

I Checking for acceptance is harder for NFSAs than for DFSAs, due to
choicepoints!

I Above, there are two possible outward transitions in q5 for input symbol b.

I Algorithmic options:

I Backup: whenever we encounter a choicepoint, generate a list of
transition options and mark our position. Try one. If we fail, go back to
the last choicepoint and try the next option on the list. If we run out of
options, then the string is rejected.

I Lookahead: look forward in the string to guide choice.
I Parallelism: Instead of maintaining and updating a single state, build a

set of possible states for each string position.

FSA determinization

I Every NFSA can be determinized to create a DFSA that accepts and
rejects the same strings

I NFSAs and DFSAs are expressively equivalent

Partial vs total FSAs

I In a total FSA, state q ∈ Q and every symbol i ∈ Σ, there is a

transition q
i
 q′ ∈ ∆ for some q′ ∈ Q.

I Graphically: in every state, for every symbol in Σ there is at least one
outgoing arc labeled with that symbol.

I If an FSA is not total, then it is partial.
I For every partial FSA, there is a total FSA that accepts and rejects

exactly the same string set.

Partial FSA

q0start q1
a

b
Equivalent total FSA

q0start q1
a

b

q2

b
a

a,b

Writing grammar fragments

I With FSAs in hand, we will start to explore writing fragments of
natural language grammars

I A grammar fragment is not a complete description of a language and its
structure

I Rather, a fragment targets part of a language and should capture
insights about the structure of that part

I Grammar fragments can target any of a number of levels of linguistic
structure: lexicon, phonology, morphology, syntax, semantics

I Broad goal: as we accumulate grammar fragments for a language, we
should obtain an increasingly close approximation of the true
characterization of the language and its structure

Fragment example 1: Finnish word-level phonotactics

I In Finnish, the possible syllable structures are V, CV, VC, CVC, CCVC (where
C=consonant, V=vowel).

I Constraint 1: Word-initially, any consonant can appear except for d and ng.

q0start q1
#

q2

d,ng

q3
other

σ

q4
#

= word boundary
“other” = symbols in Σ not

appearing in another
outgoing edge from
the state

I Add constraint 2: Word-initially, CC sequences must be stop+liquid(=l).

q0start q1
#

q2

d,ng

q3
all but d,ng

q4
V q5

σ

#

q6

non-d stop

l

Fragment example 2: English adjective ordering

I Consider the following English adjective classes:

Class Examples
Size big, short, wide, heavy, voluminous
Age old, new, recent
Color blue, black, white, colorless
Material wooden, organic, metal, stone

I The following FSA captures their relative ordering preferences:

q0start q1 q2 q3 q4

AdjSize AdjAge AdjCol AdjMatl

ε ε ε Noun

Acceptable Unacceptable
table old (missing a noun!)
old table ?table old
big blue building ?blue big building
voluminous organic produce ?organic voluminous produce

I Note: the fuller picture is more complicated! For example, contrastive stress
can help bring an adjective leftward (e.g., “the WOODEN old door, not the
STONE one”). But this simple description captures some major trends.

Summary thus far

I Regular expressions are an expressive, but constrained, formalism for
defining sets of strings

I Finite-state automata are an expressively equivalent formalism for
defining sets of strings

I We can write fragments of natural language grammars using these
formalisms for at least some kinds of phonotactics and bits of English
syntax

I Looking ahead:
I Mechanisms to combine finite-state grammar fragments into a single

unified fragment
I What parts of natural language structure can and cannot be captured by

these formalisms?

Regular languages

I From the standpoint of formal language theory, a language in Σ∗ is a
set of strings: L ⊆ Σ∗

I The set of strings matched by a regex, or accepted by an FSA, is the
language defined by the regex or FSA

I Any language defined by a regex or FSA is a regular language
I The set of regular languages for an alphabet Σ can also be defined

inductively:
I ∅ is a regular language;
I For all a ∈ Σ ∪ ε, {a} is a regular language;
I If L is a regular language, then so are:

I its complement L = {w |w /∈ L};
I Its Kleene closure

L∗ = {∀n ∈ 0, 1, · · · : w1w2 . . .wn|∀i ∈ 1 . . .N : wi ∈ L};
I If L1 and L2 are regular languages, then so are:

I their concatenation L1 ◦ L2 = {w1w2|w1 ∈ L1 ∧ w2 ∈ L2}
I their union L1 ∪ L2

I Recommendation: compare this inductive definition of regular
languages with the syntax & semantics of regular expressions, as they
are closely related

Regular languages (standpoint of formal language theory)

I A language in Σ∗ is a set of strings: L ⊆ Σ∗

I The set of strings matched by a regex, or accepted by an FSA, is the
language defined by the regex or FSA

I Any language defined by a regex or FSA is a regular language
I Inductive characterization of the set of regular languages for Σ:

I ∅ is a regular language;
I For all a ∈ Σ ∪ ε, {a} is a regular language;
I If L is a regular language, then so are:

I its complement L = {w |w /∈ L};
I Its Kleene closure

L∗ = {∀n ∈ 0, 1, · · · : w1w2 . . .wn|∀i ∈ 1 . . .N : wi ∈ L};
I If L1 and L2 are regular languages, then so are:

I their concatenation L1 ◦ L2 = {w1w2|w1 ∈ L1 ∧ w2 ∈ L2}
I their union L1 ∪ L2

I Recommendation: compare this inductive definition with syntax &
semantics of regular expressions, as they’re closely related

Constructing an FSA from a regex r (slightly informal)

I Base cases:
r = ε r = ∅ r =a

q0start q0start q0start q1
a

I Additional operators we need for inductive construction:

Concatenation Disjunction Kleene closure

Astart B
ε

q0start

A

B

qF

ε

ε

ε

ε Aq0start
ε

ε

I Semantics regarding the resulting automaton A′:

Astart A A
x

A
x

The start state of
A is the start state
of A′

Every final state of
A is final in A′

A′ has an x-labeled
transition from every fi-
nal state in A to wher-
ever the arrow points to

A′ has an x-labeled transi-
tion from wherever the ar-
row originates to the start
state of A

Closure properties of regular languages

I From the past two slides, we saw that the regular languages are closed
under:
I Concatenation
I Kleene closure
I Union
I Complementation

I Notably, this also implies that the regular languages are also closed
under intersection (Recommended exercise: why?)

I Closure under intersection plays an important role in what’s coming up!

Finite state transducers, briefly

I A finite-state transducer consists of:
I A finite set of N states Q = {q0, q1, . . . , qN−1}, with q0 the start state
I A finite input alphabet Σ of symbols
I A finite output alphabet Γ of symbols
I A set of final states F ⊆ Q
I A transition relation ∆: a finite set of transitions of the form q

x :y
 q′,

with q, q′ ∈ Q, x ∈ Σ ∪ {ε}, y ∈ Γ ∪ {ε}. Informally, “if you’re in state q
and have input x available next, you can output y and move to q′”.

I Two example finite-state transducers:

q0start

dog : N
heavy : Adj

the : Det

cat : N

chases : V
a : Det

barked : V

Maps words to parts of speech:

Input the dog chases the cat

Output Det N V Det N

q0start

a : a

b : b

q1

q2

a : ε
b : b

ε : a

Optional exchange of ab

Input Possible outputs

aabbab aabbab, ababab

aabbba, ababba

Structural ambiguity in English syntax

I Consider the following generalizations about English:
I A sentence can consist of the sequence They are NP.
I A sentence can consist of the sequence They are Vgnd NP, where Vgnd

is a gerund verb (jumping, sparkling, sleeping, . . .).
I An NP can consist of a noun preceded by zero or more adjectives (e.g.,

table, precious metals, big green buildings).
I A gerund verb can function as an adjective inside an NP (e.g., sleeping

children, terrific shooting performance), so that any English word that can
serve in the part of speech Vgnd can also serve in the part of speech Adj.

I Suggested exercise: before going on, try to express the following
generalizations in an FSA for this fragment of English syntax, over the
alphabet Σ = {they,are,Vgnd,Adj,N}

Structural ambiguity in English syntax II

I An FSA that expresses these generalization:

q0start q1 q2

q3

q4 q5
they are

Vgnd ε

ε

Adj

Nthey: they are: are

Vgnd: Vgnd ε: |NP

ε: |NP

Adj: Adj

N: N

I Implicitly captures a bit of syntax: everything “after” q4 is part of the
post-verbal NP, everything “before” q4 is outside of it

I We could make this explicit by converting the automaton into a
transducer that annotates in the phrase boundary

Input Output
they are Vgnd N they are Vgnd |NP N

they are Adj N they are |NP Adj N

I The multiple paths through the automaton offer the possibility for
different structural descriptions of strings

Weak vs. strong generative capacity

I Weak generative capacity: what languages (string sets) can be
defined by a grammatical formalism?

They are Vgnd N

They are Vgnd Adj N

They are Adj N
...

I Strong generative capacity: what sets of structural descriptions can
be defined by a grammatical formalism?

They are Vgnd [NP N]NP
They are Vgnd [NP Adj N]NP
They are Vgnd [NP Adj N]NP
...

Phenomenon Finite-state machine
(FSM) weak?

FSM strong?

Gerund/adjective ambiguity 3 3

Multiple prepositional phrases in English

I Consider the following set of generalizations:
I An NP can consist of a determiner and a noun, optionally followed by one

or more prepositional phrases (PPs).
I A PP consists of a preposition followed by an NP.

I Example NPs that these generalizations license:
a joke

a joke about the woman

a joke about the woman with an umbrella

a joke about the woman with an umbrella on the street
...

I Recommended exercise: try writing an FSA for this before going on!
I Observe: as PPs accumulate, the meanings multiply!

a joke about the woman with an umbrella on the street

I # meanings grows as the Catalan numbers, Ck =
(2k
k

)
−
(2k
k−1
)

(Church
& Patil, 1982)

Multiple prepositional phrases in English II

I An NP can consist of a determiner and a noun, optionally followed by one or more prepositional phrases.

I A prepositional phrase (PP) consists of a preposition followed by an NP.
a joke

a joke about the woman

a joke about the woman with an umbrella

a joke about the woman with an umbrella on the street

I Example FSA one might try:
q0start q1 q2

Det N

Prep

I Problem: there’s only one path, so no mechanism to account for
structural ambiguity. We could try adding states. . .

q0start q1 q2 q3 q4
Det N

Prep

Prep Det

N

I . . . but we would have to add states for every additional level of PP
stacking.

I Since PP stacking is unbounded, a finite-state machine won’t be able to
generate enough structural descriptions for an unbounded number of
PPs.

Weak vs. strong generative capacity

Phenomenon FSM weak? FSM strong?
Gerund/adjective ambiguity 3 3

NPs with stacked PP postmodifiers 3 7

Case study 3: object-extracted relative clauses

I Consider this sentence of English:

the rock that the squirrel likes can be found in the garden

I Intuitively, it involves combining these two sentences “the right way”:
the squirrel likes the rock

the rock can be found in the garden

I It involves the syntactic construction of relativization, extracting the
object the rock; the resulting relative clause is used as a postmodifier:

rock that the squirrel likes the rock

the rock can be found in the garden

the rock that the squirrel likes can be found in the garden

Multiple center-embedding with relative clauses

N that NP V NP

the N 〈rest of clause〉
the N that NP V 〈rest of clause〉
I Subject-modifying object-extracted relative clauses can be nested:

the rock can be found in the garden

the rock that the squirrel likes can be found in the garden

the rock that the squirrel that the dog chases likes can be found

in the garden

the rock that the squirrel that the dog that the woman owns

chases likes can be found in the garden

...

I The resulting sentences start to get very hard to understand, but it is
theoretically productive to assume that they are implied by the
relativization construction and thus part of the language

I That is, they may tax human linguistic performance, but they should
be part of a theory of human grammatical competence

Case study 3: multiple center embedding

N that NP V NP

the N 〈rest of clause〉
the N that NP V 〈rest of clause〉

the rock can be found in the garden

the rock that the N V can be found in the garden

the rock that the N that the N V V can be found in the garden

the rock that the N that the N that the N V V V can be found in

the garden

...

I Recommended exercise: before going on, think of how you would try
to capture this pattern (at least in part) with a finite-state model.

I It turns out that this pattern cannot be modeled with finite-state
machines

I Showing this rigorously requires additional technical apparatus that we’ll
cover next

Pumping strings

I Consider the following FSA:

q0start q1 q2

q3q4 q5

q6
dogs and

loads

and

loads

of

cats

cats

I Corresponding regex: dogs and (cats|loads (and loads)* of cats)

I The following sets of strings are accepted:

dogs and cats (=s1)
dogs and loads of cats (=s2)
dogs and loads and loads of cats (=s3)
dogs and loads and loads and loads of cats (=s4)
...

I For s3, we could repeat the substring and loads as many times as we want!

I This is called pumping s3 with the substring and loads.

The Pumping Lemma for regular languages

I Informally: if L is regular, then every string that is “long enough”
contains some non-empty “intermediate” section that can be arbitrarily
pumped without leaving L.

q0start q1 q2

q3q4 q5

q6
dogs and

loads
and

loads
of

cats

cats

dogs and (cats|loads (and loads)* of cats)

I Formally: if L ⊆ Σ∗ is regular, then there is some integer k such that
for every string s ∈ L such that |s| > k can be written as s = xyz for
x , y , z ∈ Σ∗, with:
I |y | ≥ 1 (y is non-empty);
I |xy | ≤ k;
I for all i ≥ 0, xy iz ∈ L (y can be pumped in xyz).

Example of the pumping lemma’s application

if L ⊆ Σ∗ is regular, then there is some
integer k such that for every string s ∈ L
such that |s| > k can be written as s =
xyz for x , y , z ∈ Σ∗, with:

I |y | ≥ 1 (y is non-empty);

I |xy | ≤ k ;

I for all i ≥ 0, xy iz ∈ L (y can be
pumped in xyz).

q0start q1 q2

q3q4 q5

q6
dogs and

loads
and

loads
of

cats

cats

dogs and (cats|loads (and loads)* of cats)

I We can show the Pumping Lemma is satisfied by setting (e.g.) k = 6.

I We now need to analyze the infinite set of strings of length > 6, e.g.:

x︷ ︸︸ ︷
dogs and loads

y︷ ︸︸ ︷
and loads

z︷ ︸︸ ︷
of cats

I y is non-empty;

I |xy | ≤ k;

I xy iz is in the language for all i ≥ 0.

I We could do a similar decomposition for every other string in the language of
length > 6. Thus, the pumping lemma is satisfied, and the language is regular!

The argument that English is not regular

I We define an idealization of the natural language English and call it
English.

I We use a regular expression to define a regular language L‡ and call its
intersection with English L† = English ∩ L‡.

I If English is regular, then L† must be regular, since regular languages
are closed under intersection.

I We use the pumping lemma for regular languages to show that L† is not
regular.

I Therefore, English is not regular.

Evaluating multiple center-embedding with the Pumping
Lemma

the rock can be found in the garden

the rock that the N V can be found in the garden

the rock that the N that the N V V can be found in the garden

the rock that the N that the N that the N V V V can be found in the

garden
...

I We will call this infinite set L† and summarize it as:

the rock (that the N)i Vi can be found in the garden

for i ≥ 0, with the multiple appearances of i indicating that (that the

N) and V must appear in place the same number of times as each other.

I Note that strings of the following form are not OK English when i 6= j :

the rock (that the N)i Vj can be found in the garden

e.g., ∗the rock that the squirrel can be found in the garden is not in
English.

I We assume that L† is part (formally, a subset) of English.

Intersecting English with a regular language

L† = the rock (that the N)i Vi can be found in the garden

I Call the regular language to the regex below L‡:

the rock (that the N)* V* can be found in the garden

I Then

English ∩ L‡ = L†

I So, if English is regular, then L† is regular!

I We will use the contrapositive: if L† is not regular, then English is not
regular either.

I We will be able to use the Pumping Lemma for regular languages to
show that L† is not regular

Proving by contradiction that L† is not regular

if L ⊆ Σ∗ is regular, then there is some integer k such that for every string s ∈ L such
that |s| > k can be written as s = xyz for x , y , z ∈ Σ∗, with:

I |y | ≥ 1 (y is non-empty);

I |xy | ≤ k ;

I for all i ≥ 0, xy iz ∈ L (y can be pumped in xyz).

I If L† were regular, then there must be some k per the above.
I Suppose there is some such k . Then consider the following string:

the rock (that the N)k Vk can be found in the garden

I We should be able to find an appropriate xyz decomposition.
I Since |xy | ≤ k , y cannot contain any Vs. We can distinguish two cases:

I y could contain one or more Ns. But then pumping y would yield a string
that doesn’t have the same number of Ns and Vs, which wouldn’t be in L†!

I y might be the string the, that, or that the. But then pumping y will
also yield a string outside of L†!

I Either way, a contradiction: for English to be regular, L† had to be
regular. But L† can’t be regular according to the Pumping Lemma!

I Thus English is not regular

Summary

Phenomenon FSM weak? FSM strong?
Gerund/adjective ambiguity 3 3

NPs with stacked PP postmodifiers 3 7

Multiply nested object relative clauses 7 7

I Both weak and strong generative capacity of grammatical formalisms
are of interest

I Finite-state models can capture some features of English syntactic
structure, but have neither the strong nor the weak generative capacity
for other features

I Looking ahead: these classic results motivate more expressive
grammatical formalisms that have been central to the cognitive science
of language for decades

References: general formal language theory I

Harrison, M. A. (1978). Introduction to formal language theory.
Addison-Wesley Longman Publishing Co., Inc.

Jäger, G., & Rogers, J. (2012). Formal language theory: Refining the
chomsky hierarchy. Philosophical Transactions of the Royal Society
B: Biological Sciences, 367(1598), 1956–1970.

Kornai, A. (2007). Mathematical linguistics. Springer Science & Business
Media.

Sipser, M. (2012). Introduction to the theory of computation. Cengage
learning.

References: finite-state automata and transducers I

Allauzen, C., Riley, M., Schalkwyk, J., Skut, W., & Mohri, M. (2007).
OpenFst: A general and efficient weighted finite-state transducer
library [http://www.openfst.org]. In Proceedings of the ninth
international conference on implementation and application of
automata, (ciaa 2007), Springer. http://www.openfst.org.

Beesley, K. R., & Karttunen, L. (2003). Finite-state morphology: Xerox tools
and techniques. CSLI, Stanford.

Mohri, M. (1997). Finite-state transducers in language and speech
processing. Computational Linguistics, 23(2), 269–311.

Mohri, M., Pereira, F., & Riley, M. (2002). Weighted finite-state transducers
in speech recognition. Computer Speech & Language, 16(1), 69–88.

Roche, E., & Schabes, Y. (1997). Finite-state language processing. MIT
Press.

References: phonotactics I

Futrell, R., Albright, A., Graff, P., & O’Donnell, T. J. (2017). A generative
model of phonotactics. Transactions of the Association for
Computational Linguistics, 5, 73–86.

Hayes, B. (2011). Introductory phonology (Vol. 32). John Wiley & Sons.

Hayes, B., & Wilson, C. (2007). A maximum entropy model of phonotactics
and phonotactic learning. Linguistic Inquiry, 39, 379–440.

Heinz, J. (2010). Learning long-distance phonotactics. Linguistic Inquiry,
41(4), 623–661.

McQueen, J. M. (1998). Segmentation of continuous speech using
phonotactics. Journal of Memory and Language, 39(1), 21–46.

References: weak and strong generative capacity I

Bresnan, J., Kaplan, R. M., Peters, S., & Zaenen, A. (1982). Cross-serial
dependencies in dutch. In The formal complexity of natural language
(pp. 286–319). Springer.

Chomsky, N., & Miller, G. A. (1963). Introduction to the formal analysis of
natural languages. In R. D. Luce, R. R. Bush, & E. Galanter (Eds.),
Handbook of mathematical psychology (pp. 269–321). New York:
John Wiley & Sons, Inc.

Kornai, A., & Pullum, G. K. (1990). The x-bar theory of phrase structure.
Language, 24–50.

Miller, P. (2000). Strong generative capacity: The semantics of linguistic
formalism. Cambridge.

Vijay-Shanker, K., & Weir, D. J. (1994). The equivalence of four extensions
of context-free grammar. Mathematical Systems Theory, 27(6),
511–546.

References: limits of finite-state models for natural
language I

Chomsky, N. (1956). Three models for the description of language. IRE
Transactions on Information Theory, 2(3), 113–124.

Karlsson, F. (2007). Constraints on multiple center-embedding of clauses.
Journal of Linguistics, 365–392.

Kornai, A. (1985). Natural languages and the Chomsky hierarchy. In Second
conference of the European chapter of the association for
computational linguistics, Geneva, Switzerland, Association for
Computational Linguistics.

Miller, G. A., & Chomsky, N. (1963). Finitary models of language users. In
R. D. Luce, R. R. Bush, & E. Galanter (Eds.), Handbook of
mathematical psychology (pp. 419–491). New York: John Wiley &
Sons, Inc.

	Overview
	Regular expressions
	Phonotactics
	Finite-state automata
	Grammar fragments
	Regular languages
	Finite-state transducers
	Weak vs. Strong Generative Capacity
	Limits of finite-state models for natural language
	The Pumping Lemma for Regular Languages
	English is not a regular language

	References
	References
	References
	References
	References

