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Bob can only say one word to communicate 
with you and he says: "glasses"

Empirical finding: >75% of experimental 
participants choose character B!
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Formalizing theories of semantics & pragmatics
• How does human language achieve its unbounded and 

highly context-dependent expressive capacity?
• Semantics: the “literal” meanings of words and the rules 

of composition by which words are combined
• Pragmatics: how a speaker’s communicative intent is 

inferred from literal meaning in context
A. I could really use a cup of coffee.
B. There’s a good place called Area Four nearby.

• Probabilistic models over rich logical structures finally 
allow us to formalize joint semantic/pragmatic models

• Allows us to connect insights about linguistic meaning 
from across cognitive science—linguistics, AI, cognitive 
psychology, social cognition, philosophy

5
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Semantics: principle of compositionality

6

The meaning of a complex expression is determined 
by the rules by which the expression is formed as 
applied to the meaning of the expression’s subparts.

⟦  ⟧S

NP VP
= ⟦VP⟧(⟦NP⟧)

⟦  ⟧NP

Adj N
= ⟦Adj⟧(⟦N⟧)

...



Pragmatics: Grice, 1975

7

Make your conversational contribution such as 
is required, at the stage at which it occurs, 
by the accepted purpose or direction of the 
talk exchange in which you are engaged. One 
might label this the COOPERATIVE PRINCIPLE.



Grice's maxims (in his own words)
• Quality: Try to make your contribution one that is true, i.e.: 

• Do not say what you believe to be false. 
• Do not say that for which you lack adequate evidence. 

• Quantity: 
• Make your contribution as informative as is required (for the 

current purposes of the exchange). 
• Do not make your contribution more informative than is 

required. 
• Relation: Be relevant 
• Manner: Be perspicuous, i.e.: 

• Avoid obscurity of expression 
• Avoid ambiguity 
• Be brief 
• Be orderly

8(Grice, 1975)



Generating implicatures
• Assuming that the maxims hold often allows listeners to 

infer meaning intentions on the part of the speaker that go 
beyond the literal meaning of the speaker's utterance 

• These additional meaning intentions are implicatures.
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Examples of the maxims in action
• Example:
A. I could really use a cup of coffee.
B. There’s a good place called Area Four nearby.

• Assuming the maxims of Quality (be truthful) and 
Relation (be relevant) holds allows B to understand A's 
declarative statement as a request for information, and 
allows A to understand B's response as providing that 
information
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Examples of the maxims in action
• Example: A and B are late in their senior year of high 

school and discussing college applications by text. 
A. How did your applications go?
B. I got into some of my top-choice schools

• In addition to the Maxims of Quality and Relation, 
assuming the Maxim of Quantity holds allows A to infer 
that there were some of B's top-choice schools that B did 
not get into

11
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Examples of the maxims in action
• Example: A performed a duet. C was in the audience and 

relates the experience to B, who was not.
B. How was the performance?
C. A got all the notes in the right order.

• The maxim of Manner licenses the inference that A's 
performance may not have been that great.
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A simple communication game
• The speaker knows which of two states {A,B} holds of 

the world
• She can transmit one of two messages {x,y} to the 

listener to signal which world state holds
• Speaker and listener have as common ground:

• A prior distribution on world state P(A), P(B)
• Knowledge that messages x and y are equal in cost
• That the game is purely cooperative

13
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• But literal meanings don’t hand us Pareto optimality
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• “Remarkable” fact: the interpretation of some that is 
responsible for suboptimality is dispreferred!
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A simple communication game
• Efficient communication would involve getting as close as 

possible to Pareto-optimal strategies…

• …and away from the suboptimal strategies

• …but without conventions, there’s no way to do this 
reliably!
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Scalar implicature
• Consider the conventions offered us by some and all
• Two meanings: ∀, ⋿¬∀

• Two signals:
• all is compatible only with meaning ∀
• some is compatible with both meaning ∀ and meaning ⋿¬∀

• For simplicity, assume prior P(⋿¬∀)=P(⋿¬∀)=1/2

18
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Bayesian theories of pragmatics
Assumptions:
• Speaker and listener beliefs represented as probability 

distributions over world states
• Joint communicative goal: 

• align the listener’s beliefs with those of the speaker
• but maintain brevity while doing so!

• Grammar and the literal meanings of words are common 
knowledge between speaker and listener

• Speaker and listener can recursively reason 
(probabilistically) about each other

19

(Frank & Goodman, 2012; Bergen et al., 2016; Goodman & Frank, 2016; Franke, 2009; 
Jäger & Ebert, 2009; Jäger, 2011)
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Scalar implicature
• Simple model of literal interpretation:

• Listener rules out meanings incompatible with message
• Among meanings compatible with message, prefers those 

with higher prior probability
• Literal interpretation matrix for some/all:

• This is non-Pareto—! 
• —and it fails to capture human preferences 20
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• The process of recursion strengthens the implicature

Speaker—listener recursion in RSA
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Conceptual framing
• Speaker and listener got (close) to a Pareto-optimal 

strategy by combining two ingredients: 
• Language knowledge (lexicon/grammar) as the raw 

materials for initial solutions to the communication game 
• General principles of socio-cognitive reasoning to craft 

these raw materials into more efficient solutions 
• These two ingredients together allow discourse 

participants to do so much more than either one alone
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↓ 

...by just turning the key

I got the car to start 
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...I needed to do more than 
just turn the key

I-implicature 
(Horn’s R, sort of)

Interpret utterances as 
the prototypical case

The cup is on the table  
↓ 

It’s in contact with the table

I injured a finger 
↓ 

I injured my own finger

Can we explain this typology from basic principles in a 
probabilistic pragmatic framework, respecting linguistic form, 
semantic composition, and world knowledge?
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Q/I tradeoff in rational speech-act theory
• Prior probability and simplicity trade off against one another 
• But they aren’t symmetric!

28
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A rich testbed for exploring Q/I tradeoff

• 1348 judgments 
of 108 sentence 
prompts 

• Multivariate 
mixed-effects 
logistic 
regression 
analysis
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1. Effect of prior 
2. Overall other skew 
3. Relational nouns favor own 
4. “Only-one-of” nouns favor other 
5. Null determiners favor own (Poppels & Levy, 2015)
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• Differences in scale structure can predict validity of 

compositions
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danger

fullness

✓The glass is perfectly full. 
✓The glass is perfectly empty.

✓The neighborhood is perfectly safe. 
✴The neighborhood is perfectly dangerous.



What the degree semantics doesn’t say

34



What the degree semantics doesn’t say

• This is a very elegant model

34



What the degree semantics doesn’t say

• This is a very elegant model
• The abstractness of the model allows for context-sensitivity

34



What the degree semantics doesn’t say

• This is a very elegant model
• The abstractness of the model allows for context-sensitivity

• But it doesn’t say how this context-sensitivity is achieved!

34



What the degree semantics doesn’t say

• This is a very elegant model
• The abstractness of the model allows for context-sensitivity

• But it doesn’t say how this context-sensitivity is achieved!
• How does tall elephant turn out to mean something different 

from tall mouse?

34



What the degree semantics doesn’t say

• This is a very elegant model
• The abstractness of the model allows for context-sensitivity

• But it doesn’t say how this context-sensitivity is achieved!
• How does tall elephant turn out to mean something different 

from tall mouse?
• How can the same individual be evaluated as either tall or 

not tall in different contexts?

34



What the degree semantics doesn’t say

• This is a very elegant model
• The abstractness of the model allows for context-sensitivity

• But it doesn’t say how this context-sensitivity is achieved!
• How does tall elephant turn out to mean something different 

from tall mouse?
• How can the same individual be evaluated as either tall or 

not tall in different contexts?

34



What the degree semantics doesn’t say

• This is a very elegant model
• The abstractness of the model allows for context-sensitivity

• But it doesn’t say how this context-sensitivity is achieved!
• How does tall elephant turn out to mean something different 

from tall mouse?
• How can the same individual be evaluated as either tall or 

not tall in different contexts?

34

Stephen Curry is tall.



What the degree semantics doesn’t say

• This is a very elegant model
• The abstractness of the model allows for context-sensitivity

• But it doesn’t say how this context-sensitivity is achieved!
• How does tall elephant turn out to mean something different 

from tall mouse?
• How can the same individual be evaluated as either tall or 

not tall in different contexts?

34

Stephen Curry is tall.



What the degree semantics doesn’t say

• This is a very elegant model
• The abstractness of the model allows for context-sensitivity

• But it doesn’t say how this context-sensitivity is achieved!
• How does tall elephant turn out to mean something different 

from tall mouse?
• How can the same individual be evaluated as either tall or 

not tall in different contexts?

34

Stephen Curry is tall.

(Stephen Curry is 6’2”; this is the 12th 
percentile of NBA player heights)



What the degree semantics doesn’t say

• This is a very elegant model
• The abstractness of the model allows for context-sensitivity

• But it doesn’t say how this context-sensitivity is achieved!
• How does tall elephant turn out to mean something different 

from tall mouse?
• How can the same individual be evaluated as either tall or 

not tall in different contexts?

34

Stephen Curry is tall.

(Stephen Curry is 6’2”; this is the 12th 
percentile of NBA player heights)

Stephen Curry is a tall 
basketball player.



Towards a pragmatic model for scalar adjectives
• Desiderata 

• Inference on a continuum of possible scalar values 
• A threshold representation

35
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A speaker model
• Assume a set of alternative utterances available to speaker 

• For “Pat ate some of the cookies”, alternatives were some/all 
• For “I injured a finger”, alternatives were a/my/someone else’s 

• Here, we assume alternatives (to start) tall and silence (∅)
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Lassiter & Goodman’s 
cost assumption:
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Pragmatic listener is a standard Bayesian comprehender:

What do we do with this joint distribution?

Proposal: they are conditionally independent…

L1(m, ✓u|u) / S1(u|m, ✓u)P (m)P (✓u)

…and θu has a uniform prior:

L1(m, ✓u|u) / S1(u|m, ✓u)P (m)

This is a proposal of non-trivial theoretical depth and interest; let’s discuss! 



Visualizing pragmatic listener inferences
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Antonyms
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Absolute adjectives
• full/empty, wet/dry, safe/dangerous, ... 
• meanings are less (not?) context-dependent 
• meanings are sharp(er) 
• reference classes apparently not relevant to 

interpretation

44(Due to Dan Lassiter)



The pragmatic model on full
• Crucially, fullness is a bounded scale!
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Bounds on scales
• On the Lassiter & Goodman model, asymmetries in the 

interpretations of adjectives arise naturally as a 
consequence of the prior
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Summary
• Scalar adjectives are a simple example, but pose an 

additional challenge for pragmatics models 
• Some part of the literal meaning of an utterance must get 

contextually determined 
• This is one of the simplest examples of interleaving of 

semantic representation and probabilistic pragmatic 
inference 

• Pieces of the puzzle: 
• Logical semantic representations 
• Latent-variable treatment of pieces of these representations 
• Prior probabilities on likely speaker meanings 
• Joint, utility-driven posterior inference on latent semantic 

variables and speaker meaning 
50


