Introductory Bayesian pragmatics

9.19: Computational Psycholinguistics 22 November 2023

Roger Levy

Ad-hoc scalar inference

Bob can only say one word to communicate with you and he says: "glasses"

Empirical finding: $>75 \%$ of experimental participants choose character B!

What is said and what is meant

"glasses"

Literally compatible

Coordination games

Formalizing theories of semantics \& pragmatics

- How does human language achieve its unbounded and highly context-dependent expressive capacity?
- Semantics: the "literal" meanings of words and the rules of composition by which words are combined
- Pragmatics: how a speaker's communicative intent is inferred from literal meaning in context
A. I could really use a cup of coffee.
B. There's a good place called Area Four nearby.
- Probabilistic models over rich logical structures finally allow us to formalize joint semantic/pragmatic models
- Allows us to connect insights about linguistic meaning from across cognitive science-linguistics, Al, cognitive psychology, social cognition, philosophy

Semantics: principle of compositionality

The meaning of a complex expression is determined by the rules by which the expression is formed as applied to the meaning of the expression's subparts.

$=\llbracket V P \rrbracket(\llbracket N P \rrbracket)$

$=\llbracket A d j \rrbracket(\llbracket N \rrbracket)$

Pragmatics: Grice, 1975

Make your conversational contribution such as is required, at the stage at which it occurs, by the accepted purpose or direction of the talk exchange in which you are engaged. One might label this the COOPERATIVE PRINCIPLE.

Grice's maxims (in his own words)

- Quality: Try to make your contribution one that is true, i.e.:
- Do not say what you believe to be false.
- Do not say that for which you lack adequate evidence.
- Quantity:
- Make your contribution as informative as is required (for the current purposes of the exchange).
- Do not make your contribution more informative than is required.
- Relation: Be relevant
- Manner: Be perspicuous, i.e.:
- Avoid obscurity of expression
- Avoid ambiguity
- Be brief
- Be orderly

Generating implicatures

- Assuming that the maxims hold often allows listeners to infer meaning intentions on the part of the speaker that go beyond the literal meaning of the speaker's utterance
- These additional meaning intentions are implicatures.

Examples of the maxims in action

- Example:
A. I could really use a cup of coffee.
B. There's a good place called Area Four nearby.
- Assuming the maxims of Quality (be truthful) and Relation (be relevant) holds allows B to understand A's declarative statement as a request for information, and allows A to understand B's response as providing that information

Examples of the maxims in action

- Example: A and B are late in their senior year of high school and discussing college applications by text.
A. How did your applications go?
B. I got into some of my top-choice schools
- In addition to the Maxims of Quality and Relation, assuming the Maxim of Quantity holds allows A to infer that there were some of B's top-choice schools that B did not get into

Examples of the maxims in action

- Example: A performed a duet. C was in the audience and relates the experience to B, who was not.
B. How was the performance?
C. A got all the notes in the right order.
- The maxim of Manner licenses the inference that A's performance may not have been that great.

A simple communication game

- The speaker knows which of two states $\{\mathbf{A}, \mathbf{B}\}$ holds of the world
- She can transmit one of two messages $\{x, y\}$ to the listener to signal which world state holds
- Speaker and listener have as common ground:
- A prior distribution on world state $\mathrm{P}(\mathbf{A}), \mathrm{P}(\mathbf{B})$
- Knowledge that messages x and y are equal in cost
- That the game is purely cooperative

A simple communication game

- A Pareto optimal strategy is one that delivers the highest possible reward to all players
- A speaker who knows A
- A speaker who knows B
- A listener who hears \boldsymbol{x}
- A listener who hears \boldsymbol{y}
- There are two Pareto optimal strategies in this game:

Efficiency limits of literal meaning

- But literal meanings don't hand us Pareto optimality
- A simple example: some and all

Interpretation

- "Remarkable" fact: the interpretation of some that is responsible for suboptimality is dispreferred!

A simple communication game

- There are also many non-Pareto-optimal strategies:

Interpretation

A simple communication game

- Efficient communication would involve getting as close as possible to Pareto-optimal strategies...

... and away from the suboptimal strategies

- ...but without conventions, there's no way to do this reliably!

Scalar implicature

- Consider the conventions offered us by some and all
- Two meanings: \forall, E \forall
- Two signals:
- all is compatible only with meaning \forall
- some is compatible with both meaning \forall and meaning $E\urcorner \forall$
- For simplicity, assume prior $P(E \neg \forall)=P(E \neg \forall)=1 / 2$

Bayesian theories of pragmatics

Assumptions:

- Speaker and listener beliefs represented as probability distributions over world states
- Joint communicative goal:
- align the listener's beliefs with those of the speaker
- but maintain brevity while doing so!
- Grammar and the literal meanings of words are common knowledge between speaker and listener
- Speaker and listener can recursively reason (probabilistically) about each other

Scalar implicature

- Simple model of literal interpretation:
- Listener rules out meanings incompatible with message
- Among meanings compatible with message, prefers those with higher prior probability
- Literal interpretation matrix for some/all:

Utterance

- This is non-Pareto-!
- —and it fails to capture human preferences

The Rational Speech-Act (RSA) model

Modeling hypothesis: speakers are softmax decision-theoretic agents that prefer highutility utterances:

How surprised would u leave the How intrinsically costly (time-consuming, listener about my intended meaning m ? effortful, taboo, ...) is the utterance \mathbf{u} ?

(Frank \& Goodman, 2012;
Softmax optimality parameter
Goodman \& Frank, 2016)

The Rational Speech-Act (RSA) model

Scalar implicature in RSA: listening

$P_{\text {Listener }}^{(1)}(m \mid u) \propto P_{\text {Speaker }}^{(1)}(u \mid m) P(m)$

Speaker-listener recursion in RSA

- The process of recursion strengthens the implicature

Conceptual framing

- Speaker and listener got (close) to a Pareto-optimal strategy by combining two ingredients:
- Language knowledge (lexicon/grammar) as the raw materials for initial solutions to the communication game
- General principles of socio-cognitive reasoning to craft these raw materials into more efficient solutions
- These two ingredients together allow discourse participants to do so much more than either one alone

Levinson's (2000) typology of implicature

Q-implicature

(Horn's Q)
What isn't said isn't meant

Pat has three children
Pat has exactly three children

I-implicature
(Horn's R, sort of)

Align utterance simplicity with situation stereotypicality

Interpret utterances as the prototypical case

The cup is on the table \downarrow
...by just turning the key It's in contact with the table Q/I Tradeoff

Can we explain this typology from basic principles in a probabilistic pragmatic framework, respecting linguistic form, semantic composition, and world knowledge?

Q/I tradeoff in rational speech-act theory

I injured a child \rightarrow it WASN'T my child I bAssenmexhglermitulubASemy finger

$$
c(\mathrm{my})=c(\mathrm{a})=0
$$

$c($ someone else's $)=1$

$$
P(\mathrm{MINE})=\frac{1}{2}
$$

I injured my child
I injured ${ }^{c}$ anchild $^{2} c(\mathrm{a})=0$
I injukechsomedmesetse's child

$$
P(\mathrm{MINE})=\frac{5}{6}
$$

Q/I tradeoff in rational speech-act theory

- Prior probability and simplicity trade off against one another
- But they aren't symmetric!

P(MINEla N)

A rich testbed for exploring Q / I tradeoff

The man injured a finger The man injured a child

- Five predictions from the rational speech-act model:

1. Judgments should track prior event probabilities

The man broke a nose The python broke a nose
2. Judgments should be other skewed relative to prior
3. Relational nouns should favor own judgments The man injured a child The father injured a child
4. "Only-one-of" nouns should favor other judgments The man broke a finger The man broke a nose
5. Allowing null determiners should favor own judgments

The man injured a child Man injured child

A rich testbed for exploring Q / I tradeoff

1. Effect of prior
2. Overall other skew
3. Relational nouns favor own
4. "Only-one-of" nouns favor other
5. Null determiners favor own

Adjectives: a range of semantic types

- Intersective: living, blue
- Scalar/Gradable:
- Relative: short, expensive
- Absolute: dangerous, full
- Non-intersective: possible, alleged
- Anti-intersective: former, counterfeit

Degree semantics for scalar adjectives

- The meaning of a scalar adjective like tall does two things

1. Projects a referent onto some value on a scale
2. Predicates that that value is greater than some threshold θ

Mary is tall prdee

Observations regarding degree semantics

- Differences in scale structure can predict validity of compositions

fullness
\checkmark The glass is perfectly full.
\checkmark The glass is perfectly empty.
danger
\checkmark The neighborhood is perfectly safe.
*The neighborhood is perfectly dangerous.

What the degree semantics doesn't say

This is a very elegant model

- The abstractness of the model allows for context-sensitivity
- But it doesn't say how this context-sensitivity is achieved!
- How does tall elephant turn out to mean something different from tall mouse?
- How can the same individual be evaluated as either tall or not tall in different contexts?

Stephen Curry is tall.
Stephen Curry is a tall basketball player.

Towards a pragmatic model for scalar adjectives

- Desiderata
- Inference on a continuum of possible scalar values
- A threshold representation

The Lassiter \& Goodman model

- The literal-listener model of interpretation:

$$
L_{0}(m \mid u, \theta) \propto \begin{cases}P(m) & m \geq \theta \\ 0 & \text { otherwise }\end{cases}
$$

A speaker model

- Assume a set of alternative utterances available to speaker
- For "Pat ate some of the cookies", alternatives were some/all
- For "I injured a finger", alternatives were a/my/someone else's
- Here, we assume alternatives (to start) tall and silence (\varnothing)

A pragmatic listener

Pragmatic listener is a standard Bayesian comprehender:

This is a proposal of non-trivial theoretical depth and interest; let's discuss!

Visualizing pragmatic listener inferences

$$
L_{1}\left(m, \theta_{u} \mid u\right) \propto S_{1}\left(u \mid m, \theta_{u}\right) P(m) P\left(\theta_{u}\right)
$$

Visualizing pragmatic listener inferences

$$
L_{1}\left(m, \theta_{u} \mid u\right) \propto S_{1}\left(u \mid m, \theta_{u}\right) \underline{P(m)} P\left(\theta_{u}\right)
$$

Visualizing pragmatic listener inferences

$$
L_{1}\left(m, \theta_{u} \mid u\right) \propto S_{1}\left(u \mid m, \theta_{u}\right) P(m) P\left(\theta_{u}\right)
$$

Visualizing pragmatic listener inferences

$$
L_{1}\left(m, \theta_{u} \mid u\right) \propto S_{1}\left(u \mid m, \theta_{u}\right) P(m) P\left(\theta_{u}\right)
$$

Antonyms

Absolute adjectives

- full/empty, wet/dry, safe/dangerous, ...
- meanings are less (not?) context-dependent
- meanings are sharp(er)
- reference classes apparently not relevant to interpretation

The pragmatic model on full

- Crucially, fullness is a bounded scale!

The pragmatic model on full

- Crucially, fullness is a bounded scale!

The pragmatic model on full

- Crucially, fullness is a bounded scale!

The pragmatic model on full

- Crucially, fullness is a bounded scale!

(Graph due to Dan Lassiter)

Bounds on scales

- On the Lassiter \& Goodman model, asymmetries in the interpretations of adjectives arise naturally as a consequence of the prior

Summary

- Scalar adjectives are a simple example, but pose an additional challenge for pragmatics models
- Some part of the literal meaning of an utterance must get contextually determined
- This is one of the simplest examples of interleaving of semantic representation and probabilistic pragmatic inference
- Pieces of the puzzle:
- Logical semantic representations
- Latent-variable treatment of pieces of these representations
- Prior probabilities on likely speaker meanings
- Joint, utility-driven posterior inference on latent semantic variables and speaker meaning

