
9.19 Computational Psycholinguistics

Basic semantics

November 14, 2023

Table of contents

1. Introduction, and some technical background

2. Deriving the meaning of simple sentences

3. Quantification

4. Bonus: quantification in object position, and scope ambiguity

1

Introduction, and some technical

background

From syntax to semantics

• In previous classes we have seen how to build syntax trees from

strings of words.

• The trees aimed to capture notions such as constituency (e.g. the

fact that a transitive verb forms a “chunk” with its object, but not

with its subject), and thematic roles assigned by a verb to its

arguments (e.g. the Object, Theme, Goal...).

• We also saw that some trees were structurally ambiguous (John

saw the girl with binoculars).

• Now, we’d like to define a way to systematically compute the logical

meaning of a given sentence, given its syntax tree. In other words,

we’d like to define a mapping between trees and first-order logic.

• One goal of semanticists is to capture various kinds of semantic

ambiguities, sometimes called “readings” of a sentence.

2

From syntax to semantics

• In previous classes we have seen how to build syntax trees from

strings of words.

• The trees aimed to capture notions such as constituency (e.g. the

fact that a transitive verb forms a “chunk” with its object, but not

with its subject), and thematic roles assigned by a verb to its

arguments (e.g. the Object, Theme, Goal...).

• We also saw that some trees were structurally ambiguous (John

saw the girl with binoculars).

• Now, we’d like to define a way to systematically compute the logical

meaning of a given sentence, given its syntax tree. In other words,

we’d like to define a mapping between trees and first-order logic.

• One goal of semanticists is to capture various kinds of semantic

ambiguities, sometimes called “readings” of a sentence.

2

From syntax to semantics

• In previous classes we have seen how to build syntax trees from

strings of words.

• The trees aimed to capture notions such as constituency (e.g. the

fact that a transitive verb forms a “chunk” with its object, but not

with its subject), and thematic roles assigned by a verb to its

arguments (e.g. the Object, Theme, Goal...).

• We also saw that some trees were structurally ambiguous (John

saw the girl with binoculars).

• Now, we’d like to define a way to systematically compute the logical

meaning of a given sentence, given its syntax tree. In other words,

we’d like to define a mapping between trees and first-order logic.

• One goal of semanticists is to capture various kinds of semantic

ambiguities, sometimes called “readings” of a sentence.

2

From syntax to semantics

• In previous classes we have seen how to build syntax trees from

strings of words.

• The trees aimed to capture notions such as constituency (e.g. the

fact that a transitive verb forms a “chunk” with its object, but not

with its subject), and thematic roles assigned by a verb to its

arguments (e.g. the Object, Theme, Goal...).

• We also saw that some trees were structurally ambiguous (John

saw the girl with binoculars).

• Now, we’d like to define a way to systematically compute the logical

meaning of a given sentence, given its syntax tree. In other words,

we’d like to define a mapping between trees and first-order logic.

• One goal of semanticists is to capture various kinds of semantic

ambiguities, sometimes called “readings” of a sentence.

2

From syntax to semantics

• In previous classes we have seen how to build syntax trees from

strings of words.

• The trees aimed to capture notions such as constituency (e.g. the

fact that a transitive verb forms a “chunk” with its object, but not

with its subject), and thematic roles assigned by a verb to its

arguments (e.g. the Object, Theme, Goal...).

• We also saw that some trees were structurally ambiguous (John

saw the girl with binoculars).

• Now, we’d like to define a way to systematically compute the logical

meaning of a given sentence, given its syntax tree. In other words,

we’d like to define a mapping between trees and first-order logic.

• One goal of semanticists is to capture various kinds of semantic

ambiguities, sometimes called “readings” of a sentence.

2

The Principle of Compositionality

• To devise a consistent mapping

between syntax and semantics, we

exploit the following idea which dates

back (at least) from Gottlob Frege

(1884):

Principle of Compositionality

the meaning (=denotation) of a complex

expression is determined by its structure

and the meanings of its constituents.

• This idea was revived in 1960’s by

Richard Montague.

• Montague’s thesis was that natural

languages and formal languages (in

particular programming languages) can

be treated in the same way.

That’s Frege

And that’s

Montague 3

The Principle of Compositionality

• To devise a consistent mapping

between syntax and semantics, we

exploit the following idea which dates

back (at least) from Gottlob Frege

(1884):

Principle of Compositionality

the meaning (=denotation) of a complex

expression is determined by its structure

and the meanings of its constituents.

• This idea was revived in 1960’s by

Richard Montague.

• Montague’s thesis was that natural

languages and formal languages (in

particular programming languages) can

be treated in the same way.

That’s Frege

And that’s

Montague 3

Is language really compositional?

• Can you think of any counterexamples to compositionality?

• Idiom chunks (e.g. kick the bucket), logical metonymy (e.g.

John began the book) [Pustejovsky, 1995]

• Context-sensitive elements, such as indexicals (I, you, here, now...),

gradable adjectives (e.g. tall), subjective predicates (e.g.

yummy).

• Proper names vs. definite descriptions under belief verbs:

(1) Context: Ralph saw Ortcutt at the beach and believes the man he saw

is a spy. But Ralph did not realize the man was actually Ortcutt.

Ralph believes the man at the beach is a spy.

̸⇝ Ralph believes Ortcutt is a spy [Quine, 1956].

4

Is language really compositional?

• Can you think of any counterexamples to compositionality?

• Idiom chunks (e.g. kick the bucket), logical metonymy (e.g.

John began the book) [Pustejovsky, 1995]

• Context-sensitive elements, such as indexicals (I, you, here, now...),

gradable adjectives (e.g. tall), subjective predicates (e.g.

yummy).

• Proper names vs. definite descriptions under belief verbs:

(2) Context: Ralph saw Ortcutt at the beach and believes the man he saw

is a spy. But Ralph did not realize the man was actually Ortcutt.

Ralph believes the man at the beach is a spy.

̸⇝ Ralph believes Ortcutt is a spy [Quine, 1956].

4

Is language really compositional?

• Can you think of any counterexamples to compositionality?

• Idiom chunks (e.g. kick the bucket), logical metonymy (e.g.

John began the book) [Pustejovsky, 1995]

• Context-sensitive elements, such as indexicals (I, you, here, now...),

gradable adjectives (e.g. tall), subjective predicates (e.g.

yummy).

• Proper names vs. definite descriptions under belief verbs:

(3) Context: Ralph saw Ortcutt at the beach and believes the man he saw

is a spy. But Ralph did not realize the man was actually Ortcutt.

Ralph believes the man at the beach is a spy.

̸⇝ Ralph believes Ortcutt is a spy [Quine, 1956].

4

Is language really compositional?

• Can you think of any counterexamples to compositionality?

• Idiom chunks (e.g. kick the bucket), logical metonymy (e.g.

John began the book) [Pustejovsky, 1995]

• Context-sensitive elements, such as indexicals (I, you, here, now...),

gradable adjectives (e.g. tall), subjective predicates (e.g.

yummy).

• Proper names vs. definite descriptions under belief verbs:

(4) Context: Ralph saw Ortcutt at the beach and believes the man he saw

is a spy. But Ralph did not realize the man was actually Ortcutt.

Ralph believes the man at the beach is a spy.

̸⇝ Ralph believes Ortcutt is a spy [Quine, 1956].

4

Is language really compositional? continued

• Bracketing paradoxes: unhappier is parsed [un-[happi-er]] (-er

cannot attach to a 2-syllable adjective!), yet means more unhappy

[Allen, 1978].

• Weakened/strengthened modals/logical operators:

(5) Minimal Sufficiency readings [von Fintel and Iatridou, 2007]:

To get good cheese you only have to go to the North End.

⇝ You don’t have to go to the North End (but it’s the easisest

option).

(6) “Free choice” inferences [Kamp, 1973]:

You may have cake or ice-cream.

⇝ You may have cake and you may have ice-cream.

5

Is language really compositional? continued

• Bracketing paradoxes: unhappier is parsed [un-[happi-er]] (-er

cannot attach to a 2-syllable adjective!), yet means more unhappy

[Allen, 1978].

• Weakened/strengthened modals/logical operators:

(7) Minimal Sufficiency readings [von Fintel and Iatridou, 2007]:

To get good cheese you only have to go to the North End.

⇝ You don’t have to go to the North End (but it’s the easisest

option).

(8) “Free choice” inferences [Kamp, 1973]:

You may have cake or ice-cream.

⇝ You may have cake and you may have ice-cream.

5

A detour through λ-calculus and types

• To compose meanings together, we will need functions.

• λ-calculus can be seen as a compact way of writing and applying

functions. λ-terms can take 3 forms (inductive definition):

• a variable x ;

• a function (λx . M) where x is a bound variable and M is a term;

• an application M(N) where both M and N are terms.

• If x has type α (written “x : α”) and M type β, then the term

(λx . M) has type α → β. It’s a function which, given an x : α,

returns a term M : β that usually depends on x . Note that both x

and M can be functions themselves.

• Lambda-terms terms can be “reduced” using the following operation

(assuming the types are right):

(λx . M)(y) = M[y/x]

• Meaning: applying the function (λx . M) to an input y amounts to

substituting any occurrence of the bound variable x in M by the

input y .
6

A detour through λ-calculus and types

• To compose meanings together, we will need functions.

• λ-calculus can be seen as a compact way of writing and applying

functions. λ-terms can take 3 forms (inductive definition):

• a variable x ;

• a function (λx . M) where x is a bound variable and M is a term;

• an application M(N) where both M and N are terms.

• If x has type α (written “x : α”) and M type β, then the term

(λx . M) has type α → β. It’s a function which, given an x : α,

returns a term M : β that usually depends on x . Note that both x

and M can be functions themselves.

• Lambda-terms terms can be “reduced” using the following operation

(assuming the types are right):

(λx . M)(y) = M[y/x]

• Meaning: applying the function (λx . M) to an input y amounts to

substituting any occurrence of the bound variable x in M by the

input y .
6

A detour through λ-calculus and types

• To compose meanings together, we will need functions.

• λ-calculus can be seen as a compact way of writing and applying

functions. λ-terms can take 3 forms (inductive definition):

• a variable x ;

• a function (λx . M) where x is a bound variable and M is a term;

• an application M(N) where both M and N are terms.

• If x has type α (written “x : α”) and M type β, then the term

(λx . M) has type α → β. It’s a function which, given an x : α,

returns a term M : β that usually depends on x . Note that both x

and M can be functions themselves.

• Lambda-terms terms can be “reduced” using the following operation

(assuming the types are right):

(λx . M)(y) = M[y/x]

• Meaning: applying the function (λx . M) to an input y amounts to

substituting any occurrence of the bound variable x in M by the

input y .
6

A detour through λ-calculus and types

• To compose meanings together, we will need functions.

• λ-calculus can be seen as a compact way of writing and applying

functions. λ-terms can take 3 forms (inductive definition):

• a variable x ;

• a function (λx . M) where x is a bound variable and M is a term;

• an application M(N) where both M and N are terms.

• If x has type α (written “x : α”) and M type β, then the term

(λx . M) has type α → β. It’s a function which, given an x : α,

returns a term M : β that usually depends on x . Note that both x

and M can be functions themselves.

• Lambda-terms terms can be “reduced” using the following operation

(assuming the types are right):

(λx . M)(y) = M[y/x]

• Meaning: applying the function (λx . M) to an input y amounts to

substituting any occurrence of the bound variable x in M by the

input y .
6

A detour through λ-calculus and types

• To compose meanings together, we will need functions.

• λ-calculus can be seen as a compact way of writing and applying

functions. λ-terms can take 3 forms (inductive definition):

• a variable x ;

• a function (λx . M) where x is a bound variable and M is a term;

• an application M(N) where both M and N are terms.

• If x has type α (written “x : α”) and M type β, then the term

(λx . M) has type α → β. It’s a function which, given an x : α,

returns a term M : β that usually depends on x . Note that both x

and M can be functions themselves.

• Lambda-terms terms can be “reduced” using the following operation

(assuming the types are right):

(λx . M)(y) = M[y/x]

• Meaning: applying the function (λx . M) to an input y amounts to

substituting any occurrence of the bound variable x in M by the

input y .
6

A detour through λ-calculus and types

• To compose meanings together, we will need functions.

• λ-calculus can be seen as a compact way of writing and applying

functions. λ-terms can take 3 forms (inductive definition):

• a variable x ;

• a function (λx . M) where x is a bound variable and M is a term;

• an application M(N) where both M and N are terms.

• If x has type α (written “x : α”) and M type β, then the term

(λx . M) has type α → β. It’s a function which, given an x : α,

returns a term M : β that usually depends on x . Note that both x

and M can be functions themselves.

• Lambda-terms terms can be “reduced” using the following operation

(assuming the types are right):

(λx . M)(y) = M[y/x]

• Meaning: applying the function (λx . M) to an input y amounts to

substituting any occurrence of the bound variable x in M by the

input y .
6

A detour through λ-calculus and types

• To compose meanings together, we will need functions.

• λ-calculus can be seen as a compact way of writing and applying

functions. λ-terms can take 3 forms (inductive definition):

• a variable x ;

• a function (λx . M) where x is a bound variable and M is a term;

• an application M(N) where both M and N are terms.

• If x has type α (written “x : α”) and M type β, then the term

(λx . M) has type α → β. It’s a function which, given an x : α,

returns a term M : β that usually depends on x . Note that both x

and M can be functions themselves.

• Lambda-terms terms can be “reduced” using the following operation

(assuming the types are right):

(λx . M)(y) = M[y/x]

• Meaning: applying the function (λx . M) to an input y amounts to

substituting any occurrence of the bound variable x in M by the

input y .
6

A few examples of λ-terms

• The “add 10” function (=partial application of the “sum” function):

(λx . λy . x + y)(10) = (λy . x + y)[10/x] = (λy . 10 + y)

• Adding 10 to 5 (=total application of the sum function):

(λy . 10 + y)(5) = (10 + y)[5/y] = 10 + 5 = 15

• Testing if 10 is prime (a Boolean function):

(λx . isprime(x))(10) = (isprime(x))[10/x] = isprime(10) = ⊥

• Negating the “prime” function (notice that we renamed the bound

variable in the input term into “y” to avoid variable capture):

(λP. λx . ¬P(x))(λx . isprime(x)) = (λx . ¬P(x))[(λy . isprime(y))/P]

= (λx . ¬(λy . isprime(y))(x))

= (λx . ¬isprime(y)[x/y])

= (λx . ¬isprime(x))

7

A few examples of λ-terms

• The “add 10” function (=partial application of the “sum” function):

(λx . λy . x + y)(10) = (λy . x + y)[10/x] = (λy . 10 + y)

• Adding 10 to 5 (=total application of the sum function):

(λy . 10 + y)(5) = (10 + y)[5/y] = 10 + 5 = 15

• Testing if 10 is prime (a Boolean function):

(λx . isprime(x))(10) = (isprime(x))[10/x] = isprime(10) = ⊥

• Negating the “prime” function (notice that we renamed the bound

variable in the input term into “y” to avoid variable capture):

(λP. λx . ¬P(x))(λx . isprime(x)) = (λx . ¬P(x))[(λy . isprime(y))/P]

= (λx . ¬(λy . isprime(y))(x))

= (λx . ¬isprime(y)[x/y])

= (λx . ¬isprime(x))

7

A few examples of λ-terms

• The “add 10” function (=partial application of the “sum” function):

(λx . λy . x + y)(10) = (λy . x + y)[10/x] = (λy . 10 + y)

• Adding 10 to 5 (=total application of the sum function):

(λy . 10 + y)(5) = (10 + y)[5/y] = 10 + 5 = 15

• Testing if 10 is prime (a Boolean function):

(λx . isprime(x))(10) = (isprime(x))[10/x] = isprime(10) = ⊥

• Negating the “prime” function (notice that we renamed the bound

variable in the input term into “y” to avoid variable capture):

(λP. λx . ¬P(x))(λx . isprime(x)) = (λx . ¬P(x))[(λy . isprime(y))/P]

= (λx . ¬(λy . isprime(y))(x))

= (λx . ¬isprime(y)[x/y])

= (λx . ¬isprime(x))

7

A few examples of λ-terms

• The “add 10” function (=partial application of the “sum” function):

(λx . λy . x + y)(10) = (λy . x + y)[10/x] = (λy . 10 + y)

• Adding 10 to 5 (=total application of the sum function):

(λy . 10 + y)(5) = (10 + y)[5/y] = 10 + 5 = 15

• Testing if 10 is prime (a Boolean function):

(λx . isprime(x))(10) = (isprime(x))[10/x] = isprime(10) = ⊥

• Negating the “prime” function (notice that we renamed the bound

variable in the input term into “y” to avoid variable capture):

(λP. λx . ¬P(x))(λx . isprime(x)) = (λx . ¬P(x))[(λy . isprime(y))/P]

= (λx . ¬(λy . isprime(y))(x))

= (λx . ¬isprime(y)[x/y])

= (λx . ¬isprime(x))

7

Deriving the meaning of simple

sentences

Denotation of sentences

• We assume that whole sentences are defined by the conditions under

which they are true (truth conditions).

• Note that this is slightly different from a simple Boolean value (0 or

1). For instance, the meaning of a cat is on the mat is not always 0

or 1; rather, it will evaluate to 1 iff there exists something that’s a

cat that is located on the unique salient mat; and 0 otherwise.

• We call the type of sentences (i.e. elements with truth conditions)

t. We use the double-bracket notation (J.K) to indicate the meaning

(=denotation) of a given string.

Ja cat is on the1 matK =

{
1 if ∃x . cat(x) ∧ ∃!y . mat(y) ∧ on(x)(y)

0 otherwise

1The meaning of the is more complex than what we do here: the should presuppose the existence

and the uniqueness of a mat. This is just to get a rough idea of a possible denotation of the

sentence.

8

Denotation of sentences

• We assume that whole sentences are defined by the conditions under

which they are true (truth conditions).

• Note that this is slightly different from a simple Boolean value (0 or

1). For instance, the meaning of a cat is on the mat is not always 0

or 1; rather, it will evaluate to 1 iff there exists something that’s a

cat that is located on the unique salient mat; and 0 otherwise.

• We call the type of sentences (i.e. elements with truth conditions)

t. We use the double-bracket notation (J.K) to indicate the meaning

(=denotation) of a given string.

Ja cat is on the1 matK =

{
1 if ∃x . cat(x) ∧ ∃!y . mat(y) ∧ on(x)(y)

0 otherwise

1The meaning of the is more complex than what we do here: the should presuppose the existence

and the uniqueness of a mat. This is just to get a rough idea of a possible denotation of the

sentence.

8

Denotation of sentences

• We assume that whole sentences are defined by the conditions under

which they are true (truth conditions).

• Note that this is slightly different from a simple Boolean value (0 or

1). For instance, the meaning of a cat is on the mat is not always 0

or 1; rather, it will evaluate to 1 iff there exists something that’s a

cat that is located on the unique salient mat; and 0 otherwise.

• We call the type of sentences (i.e. elements with truth conditions)

t. We use the double-bracket notation (J.K) to indicate the meaning

(=denotation) of a given string.

Ja cat is on the1 matK =

{
1 if ∃x . cat(x) ∧ ∃!y . mat(y) ∧ on(x)(y)

0 otherwise

1The meaning of the is more complex than what we do here: the should presuppose the existence

and the uniqueness of a mat. This is just to get a rough idea of a possible denotation of the

sentence.

8

Denotation of sentences

• We assume that whole sentences are defined by the conditions under

which they are true (truth conditions).

• Note that this is slightly different from a simple Boolean value (0 or

1). For instance, the meaning of a cat is on the mat is not always 0

or 1; rather, it will evaluate to 1 iff there exists something that’s a

cat that is located on the unique salient mat; and 0 otherwise.

• We call the type of sentences (i.e. elements with truth conditions)

t. We use the double-bracket notation (J.K) to indicate the meaning

(=denotation) of a given string.

Ja cat is on the1 matK =

{
1 if ∃x . cat(x) ∧ ∃!y . mat(y) ∧ on(x)(y)

0 otherwise

1The meaning of the is more complex than what we do here: the should presuppose the existence

and the uniqueness of a mat. This is just to get a rough idea of a possible denotation of the

sentence.

8

Denotation of terminals

• How to properly compute the meaning of sentences like a cat is on

the mat? Principle of Compositionality: from the meaning of the

terminals and how they merge in the tree.

• We assume that each terminal of the tree can be mapped to a

lexical “meaning”. For instance:

• Proper names refer to fixed entities (∼ constants) belonging to a

certain domain D. We call e the type of entities.

• Predicates (happy, teacher...) or verbs (like, jump...) are functions

mapping one or more entities (type e) to truth values (type t).

JhappyK : e → t JhappyK = λx . happy(x)

JteacherK : e → t JteacherK = λx . teacher(x)

JlikeK : e → (e → t) JlikeK = λx . λy . like(x)(y)

JjumpK : e → t JjumpK = λx . jump(x)

• Some special terminals (“traces”/pronouns) may denote bound

variables or type e.

• We keep determiners for later.

• Now let’s try to combine all those things together!
9

Denotation of terminals

• How to properly compute the meaning of sentences like a cat is on

the mat? Principle of Compositionality: from the meaning of the

terminals and how they merge in the tree.

• We assume that each terminal of the tree can be mapped to a

lexical “meaning”. For instance:

• Proper names refer to fixed entities (∼ constants) belonging to a

certain domain D. We call e the type of entities.

• Predicates (happy, teacher...) or verbs (like, jump...) are functions

mapping one or more entities (type e) to truth values (type t).

JhappyK : e → t JhappyK = λx . happy(x)

JteacherK : e → t JteacherK = λx . teacher(x)

JlikeK : e → (e → t) JlikeK = λx . λy . like(x)(y)

JjumpK : e → t JjumpK = λx . jump(x)

• Some special terminals (“traces”/pronouns) may denote bound

variables or type e.

• We keep determiners for later.

• Now let’s try to combine all those things together!
9

Denotation of terminals

• How to properly compute the meaning of sentences like a cat is on

the mat? Principle of Compositionality: from the meaning of the

terminals and how they merge in the tree.

• We assume that each terminal of the tree can be mapped to a

lexical “meaning”. For instance:

• Proper names refer to fixed entities (∼ constants) belonging to a

certain domain D. We call e the type of entities.

• Predicates (happy, teacher...) or verbs (like, jump...) are functions

mapping one or more entities (type e) to truth values (type t).

JhappyK : e → t JhappyK = λx . happy(x)

JteacherK : e → t JteacherK = λx . teacher(x)

JlikeK : e → (e → t) JlikeK = λx . λy . like(x)(y)

JjumpK : e → t JjumpK = λx . jump(x)

• Some special terminals (“traces”/pronouns) may denote bound

variables or type e.

• We keep determiners for later.

• Now let’s try to combine all those things together!
9

Denotation of terminals

• How to properly compute the meaning of sentences like a cat is on

the mat? Principle of Compositionality: from the meaning of the

terminals and how they merge in the tree.

• We assume that each terminal of the tree can be mapped to a

lexical “meaning”. For instance:

• Proper names refer to fixed entities (∼ constants) belonging to a

certain domain D. We call e the type of entities.

• Predicates (happy, teacher...) or verbs (like, jump...) are functions

mapping one or more entities (type e) to truth values (type t).

JhappyK : e → t JhappyK = λx . happy(x)

JteacherK : e → t JteacherK = λx . teacher(x)

JlikeK : e → (e → t) JlikeK = λx . λy . like(x)(y)

JjumpK : e → t JjumpK = λx . jump(x)

• Some special terminals (“traces”/pronouns) may denote bound

variables or type e.

• We keep determiners for later.

• Now let’s try to combine all those things together!
9

Denotation of terminals

• How to properly compute the meaning of sentences like a cat is on

the mat? Principle of Compositionality: from the meaning of the

terminals and how they merge in the tree.

• We assume that each terminal of the tree can be mapped to a

lexical “meaning”. For instance:

• Proper names refer to fixed entities (∼ constants) belonging to a

certain domain D. We call e the type of entities.

• Predicates (happy, teacher...) or verbs (like, jump...) are functions

mapping one or more entities (type e) to truth values (type t).

JhappyK : e → t JhappyK = λx . happy(x)

JteacherK : e → t JteacherK = λx . teacher(x)

JlikeK : e → (e → t) JlikeK = λx . λy . like(x)(y)

JjumpK : e → t JjumpK = λx . jump(x)

• Some special terminals (“traces”/pronouns) may denote bound

variables or type e.

• We keep determiners for later.

• Now let’s try to combine all those things together!
9

Denotation of terminals

• How to properly compute the meaning of sentences like a cat is on

the mat? Principle of Compositionality: from the meaning of the

terminals and how they merge in the tree.

• We assume that each terminal of the tree can be mapped to a

lexical “meaning”. For instance:

• Proper names refer to fixed entities (∼ constants) belonging to a

certain domain D. We call e the type of entities.

• Predicates (happy, teacher...) or verbs (like, jump...) are functions

mapping one or more entities (type e) to truth values (type t).

JhappyK : e → t JhappyK = λx . happy(x)

JteacherK : e → t JteacherK = λx . teacher(x)

JlikeK : e → (e → t) JlikeK = λx . λy . like(x)(y)

JjumpK : e → t JjumpK = λx . jump(x)

• Some special terminals (“traces”/pronouns) may denote bound

variables or type e.

• We keep determiners for later.

• Now let’s try to combine all those things together!
9

Denotation of terminals

• How to properly compute the meaning of sentences like a cat is on

the mat? Principle of Compositionality: from the meaning of the

terminals and how they merge in the tree.

• We assume that each terminal of the tree can be mapped to a

lexical “meaning”. For instance:

• Proper names refer to fixed entities (∼ constants) belonging to a

certain domain D. We call e the type of entities.

• Predicates (happy, teacher...) or verbs (like, jump...) are functions

mapping one or more entities (type e) to truth values (type t).

JhappyK : e → t JhappyK = λx . happy(x)

JteacherK : e → t JteacherK = λx . teacher(x)

JlikeK : e → (e → t) JlikeK = λx . λy . like(x)(y)

JjumpK : e → t JjumpK = λx . jump(x)

• Some special terminals (“traces”/pronouns) may denote bound

variables or type e.

• We keep determiners for later.

• Now let’s try to combine all those things together!
9

Functional Application

(2)

Mary (1)

is happy

JMaryK = M ∈ D

JisK = λP. P

JhappyK = λx . happy(x)

• Compositionality, again: the meaning

of Mary is happy depends on the

meanings of Mary, is, and happy, and

how they combine together.

• To combine 2 nodes together, we

introduce the rule of Functional

Application (FA):

If X : α merges with Y : α → β,

then JY XK2 = Y(X).

J(1)K = Jis happyK FA
= JisK(JhappyK) = JhappyK = λx . happy(x)

J(2)K = JMary is happyK FA
= Jis happyK(JMaryK)

= (λx . happy(x))(M)

= 1 iff happy(M)

2We assume X and Y are unordered here; i.e. FA also works if X comes before Y.
10

Functional Application

(2)

Mary (1)

is happy

JMaryK = M ∈ D

JisK = λP. P

JhappyK = λx . happy(x)

• Compositionality, again: the meaning

of Mary is happy depends on the

meanings of Mary, is, and happy, and

how they combine together.

• To combine 2 nodes together, we

introduce the rule of Functional

Application (FA):

If X : α merges with Y : α → β,

then JY XK2 = Y(X).

J(1)K = Jis happyK FA
= JisK(JhappyK) = JhappyK = λx . happy(x)

J(2)K = JMary is happyK FA
= Jis happyK(JMaryK)

= (λx . happy(x))(M)

= 1 iff happy(M)

2We assume X and Y are unordered here; i.e. FA also works if X comes before Y.
10

Functional Application

(2)

Mary (1)

is happy

JMaryK = M ∈ D

JisK = λP. P

JhappyK = λx . happy(x)

• Compositionality, again: the meaning

of Mary is happy depends on the

meanings of Mary, is, and happy, and

how they combine together.

• To combine 2 nodes together, we

introduce the rule of Functional

Application (FA):

If X : α merges with Y : α → β,

then JY XK2 = Y(X).

J(1)K = Jis happyK FA
= JisK(JhappyK) = JhappyK = λx . happy(x)

J(2)K = JMary is happyK FA
= Jis happyK(JMaryK)

= (λx . happy(x))(M)

= 1 iff happy(M)

2We assume X and Y are unordered here; i.e. FA also works if X comes before Y.
10

Functional Application

(2)

Mary (1)

is happy

JMaryK = M ∈ D

JisK = λP. P

JhappyK = λx . happy(x)

• Compositionality, again: the meaning

of Mary is happy depends on the

meanings of Mary, is, and happy, and

how they combine together.

• To combine 2 nodes together, we

introduce the rule of Functional

Application (FA):

If X : α merges with Y : α → β,

then JY XK2 = Y(X).

J(1)K = Jis happyK FA
= JisK(JhappyK) = JhappyK = λx . happy(x)

J(2)K = JMary is happyK FA
= Jis happyK(JMaryK)

= (λx . happy(x))(M)

= 1 iff happy(M)

2We assume X and Y are unordered here; i.e. FA also works if X comes before Y.
10

Predicate Modification

(3)

Mary (2)

is

a (1)

happy teacher

JMaryK = M ∈ D

JisK = JaK = λP. P

JhappyK = λx . happy(x)

JteacherK = λx . teacher(x)

• Both happy and teacher denote

functions of type e → t... we can’t

combine them with Functional

Application!

• To combine 2 nodes of type α → t,

we introduce the rule of Predicate

Modification (PM):

If P : α → t merges with Q : α →
t, then JP QK = λx . P(x) ∧Q(x)

J(1)K = J(2)K = Jhappy teacherK PM
= λx . happy(x) ∧ teacher(x)

J(3)K = JMary is a happy teacherK FA
= Jhappy teacherK(JMaryK)

= 1 iff happy(M) ∧ teacher(M)3

3Food for thought: does the sentence really mean that Mary is happy, and is a teacher? Or does

it rather mean that Mary is happy, for a teacher?
11

Predicate Modification

(3)

Mary (2)

is

a (1)

happy teacher

JMaryK = M ∈ D

JisK = JaK = λP. P

JhappyK = λx . happy(x)

JteacherK = λx . teacher(x)

• Both happy and teacher denote

functions of type e → t... we can’t

combine them with Functional

Application!

• To combine 2 nodes of type α → t,

we introduce the rule of Predicate

Modification (PM):

If P : α → t merges with Q : α →
t, then JP QK = λx . P(x) ∧Q(x)

J(1)K = J(2)K = Jhappy teacherK PM
= λx . happy(x) ∧ teacher(x)

J(3)K = JMary is a happy teacherK FA
= Jhappy teacherK(JMaryK)

= 1 iff happy(M) ∧ teacher(M)3

3Food for thought: does the sentence really mean that Mary is happy, and is a teacher? Or does

it rather mean that Mary is happy, for a teacher?
11

Predicate Modification

(3)

Mary (2)

is

a (1)

happy teacher

JMaryK = M ∈ D

JisK = JaK = λP. P

JhappyK = λx . happy(x)

JteacherK = λx . teacher(x)

• Both happy and teacher denote

functions of type e → t... we can’t

combine them with Functional

Application!

• To combine 2 nodes of type α → t,

we introduce the rule of Predicate

Modification (PM):

If P : α → t merges with Q : α →
t, then JP QK = λx . P(x) ∧Q(x)

J(1)K = J(2)K = Jhappy teacherK PM
= λx . happy(x) ∧ teacher(x)

J(3)K = JMary is a happy teacherK FA
= Jhappy teacherK(JMaryK)

= 1 iff happy(M) ∧ teacher(M)3

3Food for thought: does the sentence really mean that Mary is happy, and is a teacher? Or does

it rather mean that Mary is happy, for a teacher?
11

Taking stock

• What you might think at this point: we started with a string saying

“Mary is happy” and ended up with the meaning that “Mary is

happy”...well that’s not so impressive.

• First, we should keep in mind that the 2 “Mary is happy” are in

different languages.

• The object language (the one used in the string/nodes in the tree)

is the one that is to be interpreted. It could be English, French, or

Klingon.

• The meta-language (the one used in the semantic denotation of the

sentence) is the language used to describe the object language. It is

logical in nature, although it often gets paraphrased using English,

for convenience only.

• Second, our enterprise was not entirely vacuous in that we devised a

simple tree-interpretation algorithm to convert (ideally) any string

from the object-language into the meta-language.

• This entails that the meaning of each individual sentence does not

need to get memorized separately!
12

Taking stock

• What you might think at this point: we started with a string saying

“Mary is happy” and ended up with the meaning that “Mary is

happy”...well that’s not so impressive.

• First, we should keep in mind that the 2 “Mary is happy” are in

different languages.

• The object language (the one used in the string/nodes in the tree)

is the one that is to be interpreted. It could be English, French, or

Klingon.

• The meta-language (the one used in the semantic denotation of the

sentence) is the language used to describe the object language. It is

logical in nature, although it often gets paraphrased using English,

for convenience only.

• Second, our enterprise was not entirely vacuous in that we devised a

simple tree-interpretation algorithm to convert (ideally) any string

from the object-language into the meta-language.

• This entails that the meaning of each individual sentence does not

need to get memorized separately!
12

Taking stock

• What you might think at this point: we started with a string saying

“Mary is happy” and ended up with the meaning that “Mary is

happy”...well that’s not so impressive.

• First, we should keep in mind that the 2 “Mary is happy” are in

different languages.

• The object language (the one used in the string/nodes in the tree)

is the one that is to be interpreted. It could be English, French, or

Klingon.

• The meta-language (the one used in the semantic denotation of the

sentence) is the language used to describe the object language. It is

logical in nature, although it often gets paraphrased using English,

for convenience only.

• Second, our enterprise was not entirely vacuous in that we devised a

simple tree-interpretation algorithm to convert (ideally) any string

from the object-language into the meta-language.

• This entails that the meaning of each individual sentence does not

need to get memorized separately!
12

Taking stock

• What you might think at this point: we started with a string saying

“Mary is happy” and ended up with the meaning that “Mary is

happy”...well that’s not so impressive.

• First, we should keep in mind that the 2 “Mary is happy” are in

different languages.

• The object language (the one used in the string/nodes in the tree)

is the one that is to be interpreted. It could be English, French, or

Klingon.

• The meta-language (the one used in the semantic denotation of the

sentence) is the language used to describe the object language. It is

logical in nature, although it often gets paraphrased using English,

for convenience only.

• Second, our enterprise was not entirely vacuous in that we devised a

simple tree-interpretation algorithm to convert (ideally) any string

from the object-language into the meta-language.

• This entails that the meaning of each individual sentence does not

need to get memorized separately!
12

Taking stock

• What you might think at this point: we started with a string saying

“Mary is happy” and ended up with the meaning that “Mary is

happy”...well that’s not so impressive.

• First, we should keep in mind that the 2 “Mary is happy” are in

different languages.

• The object language (the one used in the string/nodes in the tree)

is the one that is to be interpreted. It could be English, French, or

Klingon.

• The meta-language (the one used in the semantic denotation of the

sentence) is the language used to describe the object language. It is

logical in nature, although it often gets paraphrased using English,

for convenience only.

• Second, our enterprise was not entirely vacuous in that we devised a

simple tree-interpretation algorithm to convert (ideally) any string

from the object-language into the meta-language.

• This entails that the meaning of each individual sentence does not

need to get memorized separately!
12

Taking stock

• What you might think at this point: we started with a string saying

“Mary is happy” and ended up with the meaning that “Mary is

happy”...well that’s not so impressive.

• First, we should keep in mind that the 2 “Mary is happy” are in

different languages.

• The object language (the one used in the string/nodes in the tree)

is the one that is to be interpreted. It could be English, French, or

Klingon.

• The meta-language (the one used in the semantic denotation of the

sentence) is the language used to describe the object language. It is

logical in nature, although it often gets paraphrased using English,

for convenience only.

• Second, our enterprise was not entirely vacuous in that we devised a

simple tree-interpretation algorithm to convert (ideally) any string

from the object-language into the meta-language.

• This entails that the meaning of each individual sentence does not

need to get memorized separately!
12

Quantification

Generalized quantifiers

• Natural languages are endowed with various quantifiers: every,

some, most, few...

(9) Every student smiled. ⇝ ∀x . student(x) =⇒ smiled(x)

(10) Some dogs barked. ⇝ ∃x . dog(x) ∧ barked(x)

• Natural language quantifiers are restricted : they do not quantify

over the whole set of possible entities, but rather on specific subsets

denoted by predicates of type e → t such as student in (9) and

dogs in (10). Those are called restrictors.

• Quantifiers moreover relate elements verifying the restrictor to

another property, e.g. smiling in (9) or barking in (10). This

property, also of type e → t, is called the (nuclear) scope of the

quantifier.

• In brief, a generalized quantifier says something about the relation

between its restrictor (predicate of type e → t) and its scope (also

(predicate of type e → t)). It is thus a function of type (e → t) →
(e → t) → t 13

Generalized quantifiers

• Natural languages are endowed with various quantifiers: every,

some, most, few...

(11) Every student smiled. ⇝ ∀x . student(x) =⇒ smiled(x)

(12) Some dogs barked. ⇝ ∃x . dog(x) ∧ barked(x)

• Natural language quantifiers are restricted : they do not quantify

over the whole set of possible entities, but rather on specific subsets

denoted by predicates of type e → t such as student in (9) and

dogs in (10). Those are called restrictors.

• Quantifiers moreover relate elements verifying the restrictor to

another property, e.g. smiling in (9) or barking in (10). This

property, also of type e → t, is called the (nuclear) scope of the

quantifier.

• In brief, a generalized quantifier says something about the relation

between its restrictor (predicate of type e → t) and its scope (also

(predicate of type e → t)). It is thus a function of type (e → t) →
(e → t) → t 13

Generalized quantifiers

• Natural languages are endowed with various quantifiers: every,

some, most, few...

(13) Every student smiled. ⇝ ∀x . student(x) =⇒ smiled(x)

(14) Some dogs barked. ⇝ ∃x . dog(x) ∧ barked(x)

• Natural language quantifiers are restricted : they do not quantify

over the whole set of possible entities, but rather on specific subsets

denoted by predicates of type e → t such as student in (9) and

dogs in (10). Those are called restrictors.

• Quantifiers moreover relate elements verifying the restrictor to

another property, e.g. smiling in (9) or barking in (10). This

property, also of type e → t, is called the (nuclear) scope of the

quantifier.

• In brief, a generalized quantifier says something about the relation

between its restrictor (predicate of type e → t) and its scope (also

(predicate of type e → t)). It is thus a function of type (e → t) →
(e → t) → t 13

Generalized quantifiers

• Natural languages are endowed with various quantifiers: every,

some, most, few...

(15) Every student smiled. ⇝ ∀x . student(x) =⇒ smiled(x)

(16) Some dogs barked. ⇝ ∃x . dog(x) ∧ barked(x)

• Natural language quantifiers are restricted : they do not quantify

over the whole set of possible entities, but rather on specific subsets

denoted by predicates of type e → t such as student in (9) and

dogs in (10). Those are called restrictors.

• Quantifiers moreover relate elements verifying the restrictor to

another property, e.g. smiling in (9) or barking in (10). This

property, also of type e → t, is called the (nuclear) scope of the

quantifier.

• In brief, a generalized quantifier says something about the relation

between its restrictor (predicate of type e → t) and its scope (also

(predicate of type e → t)). It is thus a function of type (e → t) →
(e → t) → t 13

Interpretation of quantification within set theory

• It might be easier to understand what quantifiers do by viewing

predicates as sets.

• We can do this, because a function of type α → t is the indicator

function of a subset of elements of type α. So in particular, a

function P of type e → t is the indicator function the set of all

entities of type e verifying P.

• For instance, the predicate JteacherK is equivalent to the set of all

individuals that are teachers.

• Given this equivalence, we can see generalized quantifiers as

functions from a pair of sets (restrictor set, nuclear scope set), to a

truth value.

• J some K(P)(Q) = 1 iff P ∩ Q ̸= ∅
• J all K(P)(Q) = 1 iff P ⊆ Q

• J exactly 3 K(P)(Q) = 1 iff |P ∩ Q| = 3

• J less than half K(P)(Q) = 1 iff |P∩Q|
|P| < 1/2

• ...

14

Interpretation of quantification within set theory

• It might be easier to understand what quantifiers do by viewing

predicates as sets.

• We can do this, because a function of type α → t is the indicator

function of a subset of elements of type α. So in particular, a

function P of type e → t is the indicator function the set of all

entities of type e verifying P.

• For instance, the predicate JteacherK is equivalent to the set of all

individuals that are teachers.

• Given this equivalence, we can see generalized quantifiers as

functions from a pair of sets (restrictor set, nuclear scope set), to a

truth value.

• J some K(P)(Q) = 1 iff P ∩ Q ̸= ∅
• J all K(P)(Q) = 1 iff P ⊆ Q

• J exactly 3 K(P)(Q) = 1 iff |P ∩ Q| = 3

• J less than half K(P)(Q) = 1 iff |P∩Q|
|P| < 1/2

• ...

14

Interpretation of quantification within set theory

• It might be easier to understand what quantifiers do by viewing

predicates as sets.

• We can do this, because a function of type α → t is the indicator

function of a subset of elements of type α. So in particular, a

function P of type e → t is the indicator function the set of all

entities of type e verifying P.

• For instance, the predicate JteacherK is equivalent to the set of all

individuals that are teachers.

• Given this equivalence, we can see generalized quantifiers as

functions from a pair of sets (restrictor set, nuclear scope set), to a

truth value.

• J some K(P)(Q) = 1 iff P ∩ Q ̸= ∅
• J all K(P)(Q) = 1 iff P ⊆ Q

• J exactly 3 K(P)(Q) = 1 iff |P ∩ Q| = 3

• J less than half K(P)(Q) = 1 iff |P∩Q|
|P| < 1/2

• ...

14

Interpretation of quantification within set theory

• It might be easier to understand what quantifiers do by viewing

predicates as sets.

• We can do this, because a function of type α → t is the indicator

function of a subset of elements of type α. So in particular, a

function P of type e → t is the indicator function the set of all

entities of type e verifying P.

• For instance, the predicate JteacherK is equivalent to the set of all

individuals that are teachers.

• Given this equivalence, we can see generalized quantifiers as

functions from a pair of sets (restrictor set, nuclear scope set), to a

truth value.

• J some K(P)(Q) = 1 iff P ∩ Q ̸= ∅
• J all K(P)(Q) = 1 iff P ⊆ Q

• J exactly 3 K(P)(Q) = 1 iff |P ∩ Q| = 3

• J less than half K(P)(Q) = 1 iff |P∩Q|
|P| < 1/2

• ...

14

Interpretation of quantification within set theory

• It might be easier to understand what quantifiers do by viewing

predicates as sets.

• We can do this, because a function of type α → t is the indicator

function of a subset of elements of type α. So in particular, a

function P of type e → t is the indicator function the set of all

entities of type e verifying P.

• For instance, the predicate JteacherK is equivalent to the set of all

individuals that are teachers.

• Given this equivalence, we can see generalized quantifiers as

functions from a pair of sets (restrictor set, nuclear scope set), to a

truth value.

• J some K(P)(Q) = 1 iff P ∩ Q ̸= ∅
• J all K(P)(Q) = 1 iff P ⊆ Q

• J exactly 3 K(P)(Q) = 1 iff |P ∩ Q| = 3

• J less than half K(P)(Q) = 1 iff |P∩Q|
|P| < 1/2

• ...

14

Interpretation of quantification within set theory

• It might be easier to understand what quantifiers do by viewing

predicates as sets.

• We can do this, because a function of type α → t is the indicator

function of a subset of elements of type α. So in particular, a

function P of type e → t is the indicator function the set of all

entities of type e verifying P.

• For instance, the predicate JteacherK is equivalent to the set of all

individuals that are teachers.

• Given this equivalence, we can see generalized quantifiers as

functions from a pair of sets (restrictor set, nuclear scope set), to a

truth value.

• J some K(P)(Q) = 1 iff P ∩ Q ̸= ∅
• J all K(P)(Q) = 1 iff P ⊆ Q

• J exactly 3 K(P)(Q) = 1 iff |P ∩ Q| = 3

• J less than half K(P)(Q) = 1 iff |P∩Q|
|P| < 1/2

• ...

14

Interpretation of quantification within set theory

• It might be easier to understand what quantifiers do by viewing

predicates as sets.

• We can do this, because a function of type α → t is the indicator

function of a subset of elements of type α. So in particular, a

function P of type e → t is the indicator function the set of all

entities of type e verifying P.

• For instance, the predicate JteacherK is equivalent to the set of all

individuals that are teachers.

• Given this equivalence, we can see generalized quantifiers as

functions from a pair of sets (restrictor set, nuclear scope set), to a

truth value.

• J some K(P)(Q) = 1 iff P ∩ Q ̸= ∅
• J all K(P)(Q) = 1 iff P ⊆ Q

• J exactly 3 K(P)(Q) = 1 iff |P ∩ Q| = 3

• J less than half K(P)(Q) = 1 iff |P∩Q|
|P| < 1/2

• ...

14

Interpretation of quantification within set theory

• It might be easier to understand what quantifiers do by viewing

predicates as sets.

• We can do this, because a function of type α → t is the indicator

function of a subset of elements of type α. So in particular, a

function P of type e → t is the indicator function the set of all

entities of type e verifying P.

• For instance, the predicate JteacherK is equivalent to the set of all

individuals that are teachers.

• Given this equivalence, we can see generalized quantifiers as

functions from a pair of sets (restrictor set, nuclear scope set), to a

truth value.

• J some K(P)(Q) = 1 iff P ∩ Q ̸= ∅
• J all K(P)(Q) = 1 iff P ⊆ Q

• J exactly 3 K(P)(Q) = 1 iff |P ∩ Q| = 3

• J less than half K(P)(Q) = 1 iff |P∩Q|
|P| < 1/2

• ...

14

Interpretation of quantification within set theory

• It might be easier to understand what quantifiers do by viewing

predicates as sets.

• We can do this, because a function of type α → t is the indicator

function of a subset of elements of type α. So in particular, a

function P of type e → t is the indicator function the set of all

entities of type e verifying P.

• For instance, the predicate JteacherK is equivalent to the set of all

individuals that are teachers.

• Given this equivalence, we can see generalized quantifiers as

functions from a pair of sets (restrictor set, nuclear scope set), to a

truth value.

• J some K(P)(Q) = 1 iff P ∩ Q ̸= ∅
• J all K(P)(Q) = 1 iff P ⊆ Q

• J exactly 3 K(P)(Q) = 1 iff |P ∩ Q| = 3

• J less than half K(P)(Q) = 1 iff |P∩Q|
|P| < 1/2

• ...

14

Denotation of a quantified sentence

(3)

(2)

Some student

(1)

is happy

JSomeK = λP.λQ. ∃x . P(x) ∧ Q(x)

JstudentK = λx . student(x)

JisK = λP. P

JhappyK = λx . happy(x)

J(1)K = Jis happyK = JhappyK = λx . happy(x)

J(2)K = JSome studentK FA
= JsomeK(JstudentK)

= (λP. λQ. ∃x . P(x) ∧ Q(x))(λy . student(y))

= λQ. ∃x . (λy . student(y))(x) ∧ Q(x)

= λQ. ∃x . student(x) ∧ Q(x)

J(3)K = JSome student is happyK FA
= JSome studentK(Jis happyK)

= (λQ. ∃x . student(x) ∧ Q(x))(λy . happy(y))

= ∃x . student(x) ∧ (λy . happy(y))(x)

= ∃x . student(x) ∧ happy(x)4

4Food for thought: this meaning is compatible with all (∀) students being happy. Is this

consistent with your intuitions about some? Should we then change the lexical entry of some?
15

Quantifier monotonicity

• An interesting property to study with quantifiers is monotonicity,

i.e. how quantifiers influence entailment patterns verified by their

arguments (restrictor, and scope).

• Recall from basic functional analysis that a function is monotone

(increasing or decreasing), if resp. it preserves or reverses the

ordering of its arguments:

• f is (strictly) increasing if ∀x1 < x2. f (x1) < f (x2).

• f is (strictly) decreasing if ∀x1 < x2. f (x1) > f (x2).

• Likewise, a function Q applying to predicates is upward monotone if

it leaves the entailment pattern between any 2 of its potential

arguments unchanged; and it is downward monotone if it reverses

any entailment pattern between its potential arguments.

• Q is upward monotone if ∀P1,P2 : P1 ⊆ P2. Q(P1) ⇒ Q(P2).

• Q is downward monotone if ∀P1,P2 : P1 ⊆ P2. Q(P1) ⇐ Q(P2).

• Generalized quantifiers are functions from pairs of predicates to

truth values. To assess monotonicity, one must thus look at a

partially applied generalized quantifier. We’ll see how this works for

all on the next slide. 16

Quantifier monotonicity

• An interesting property to study with quantifiers is monotonicity,

i.e. how quantifiers influence entailment patterns verified by their

arguments (restrictor, and scope).

• Recall from basic functional analysis that a function is monotone

(increasing or decreasing), if resp. it preserves or reverses the

ordering of its arguments:

• f is (strictly) increasing if ∀x1 < x2. f (x1) < f (x2).

• f is (strictly) decreasing if ∀x1 < x2. f (x1) > f (x2).

• Likewise, a function Q applying to predicates is upward monotone if

it leaves the entailment pattern between any 2 of its potential

arguments unchanged; and it is downward monotone if it reverses

any entailment pattern between its potential arguments.

• Q is upward monotone if ∀P1,P2 : P1 ⊆ P2. Q(P1) ⇒ Q(P2).

• Q is downward monotone if ∀P1,P2 : P1 ⊆ P2. Q(P1) ⇐ Q(P2).

• Generalized quantifiers are functions from pairs of predicates to

truth values. To assess monotonicity, one must thus look at a

partially applied generalized quantifier. We’ll see how this works for

all on the next slide. 16

Quantifier monotonicity

• An interesting property to study with quantifiers is monotonicity,

i.e. how quantifiers influence entailment patterns verified by their

arguments (restrictor, and scope).

• Recall from basic functional analysis that a function is monotone

(increasing or decreasing), if resp. it preserves or reverses the

ordering of its arguments:

• f is (strictly) increasing if ∀x1 < x2. f (x1) < f (x2).

• f is (strictly) decreasing if ∀x1 < x2. f (x1) > f (x2).

• Likewise, a function Q applying to predicates is upward monotone if

it leaves the entailment pattern between any 2 of its potential

arguments unchanged; and it is downward monotone if it reverses

any entailment pattern between its potential arguments.

• Q is upward monotone if ∀P1,P2 : P1 ⊆ P2. Q(P1) ⇒ Q(P2).

• Q is downward monotone if ∀P1,P2 : P1 ⊆ P2. Q(P1) ⇐ Q(P2).

• Generalized quantifiers are functions from pairs of predicates to

truth values. To assess monotonicity, one must thus look at a

partially applied generalized quantifier. We’ll see how this works for

all on the next slide. 16

Quantifier monotonicity

• An interesting property to study with quantifiers is monotonicity,

i.e. how quantifiers influence entailment patterns verified by their

arguments (restrictor, and scope).

• Recall from basic functional analysis that a function is monotone

(increasing or decreasing), if resp. it preserves or reverses the

ordering of its arguments:

• f is (strictly) increasing if ∀x1 < x2. f (x1) < f (x2).

• f is (strictly) decreasing if ∀x1 < x2. f (x1) > f (x2).

• Likewise, a function Q applying to predicates is upward monotone if

it leaves the entailment pattern between any 2 of its potential

arguments unchanged; and it is downward monotone if it reverses

any entailment pattern between its potential arguments.

• Q is upward monotone if ∀P1,P2 : P1 ⊆ P2. Q(P1) ⇒ Q(P2).

• Q is downward monotone if ∀P1,P2 : P1 ⊆ P2. Q(P1) ⇐ Q(P2).

• Generalized quantifiers are functions from pairs of predicates to

truth values. To assess monotonicity, one must thus look at a

partially applied generalized quantifier. We’ll see how this works for

all on the next slide. 16

Quantifier monotonicity

• An interesting property to study with quantifiers is monotonicity,

i.e. how quantifiers influence entailment patterns verified by their

arguments (restrictor, and scope).

• Recall from basic functional analysis that a function is monotone

(increasing or decreasing), if resp. it preserves or reverses the

ordering of its arguments:

• f is (strictly) increasing if ∀x1 < x2. f (x1) < f (x2).

• f is (strictly) decreasing if ∀x1 < x2. f (x1) > f (x2).

• Likewise, a function Q applying to predicates is upward monotone if

it leaves the entailment pattern between any 2 of its potential

arguments unchanged; and it is downward monotone if it reverses

any entailment pattern between its potential arguments.

• Q is upward monotone if ∀P1,P2 : P1 ⊆ P2. Q(P1) ⇒ Q(P2).

• Q is downward monotone if ∀P1,P2 : P1 ⊆ P2. Q(P1) ⇐ Q(P2).

• Generalized quantifiers are functions from pairs of predicates to

truth values. To assess monotonicity, one must thus look at a

partially applied generalized quantifier. We’ll see how this works for

all on the next slide. 16

Quantifier monotonicity

• An interesting property to study with quantifiers is monotonicity,

i.e. how quantifiers influence entailment patterns verified by their

arguments (restrictor, and scope).

• Recall from basic functional analysis that a function is monotone

(increasing or decreasing), if resp. it preserves or reverses the

ordering of its arguments:

• f is (strictly) increasing if ∀x1 < x2. f (x1) < f (x2).

• f is (strictly) decreasing if ∀x1 < x2. f (x1) > f (x2).

• Likewise, a function Q applying to predicates is upward monotone if

it leaves the entailment pattern between any 2 of its potential

arguments unchanged; and it is downward monotone if it reverses

any entailment pattern between its potential arguments.

• Q is upward monotone if ∀P1,P2 : P1 ⊆ P2. Q(P1) ⇒ Q(P2).

• Q is downward monotone if ∀P1,P2 : P1 ⊆ P2. Q(P1) ⇐ Q(P2).

• Generalized quantifiers are functions from pairs of predicates to

truth values. To assess monotonicity, one must thus look at a

partially applied generalized quantifier. We’ll see how this works for

all on the next slide. 16

Quantifier monotonicity

• An interesting property to study with quantifiers is monotonicity,

i.e. how quantifiers influence entailment patterns verified by their

arguments (restrictor, and scope).

• Recall from basic functional analysis that a function is monotone

(increasing or decreasing), if resp. it preserves or reverses the

ordering of its arguments:

• f is (strictly) increasing if ∀x1 < x2. f (x1) < f (x2).

• f is (strictly) decreasing if ∀x1 < x2. f (x1) > f (x2).

• Likewise, a function Q applying to predicates is upward monotone if

it leaves the entailment pattern between any 2 of its potential

arguments unchanged; and it is downward monotone if it reverses

any entailment pattern between its potential arguments.

• Q is upward monotone if ∀P1,P2 : P1 ⊆ P2. Q(P1) ⇒ Q(P2).

• Q is downward monotone if ∀P1,P2 : P1 ⊆ P2. Q(P1) ⇐ Q(P2).

• Generalized quantifiers are functions from pairs of predicates to

truth values. To assess monotonicity, one must thus look at a

partially applied generalized quantifier. We’ll see how this works for

all on the next slide. 16

Quantifier monotonicity

• An interesting property to study with quantifiers is monotonicity,

i.e. how quantifiers influence entailment patterns verified by their

arguments (restrictor, and scope).

• Recall from basic functional analysis that a function is monotone

(increasing or decreasing), if resp. it preserves or reverses the

ordering of its arguments:

• f is (strictly) increasing if ∀x1 < x2. f (x1) < f (x2).

• f is (strictly) decreasing if ∀x1 < x2. f (x1) > f (x2).

• Likewise, a function Q applying to predicates is upward monotone if

it leaves the entailment pattern between any 2 of its potential

arguments unchanged; and it is downward monotone if it reverses

any entailment pattern between its potential arguments.

• Q is upward monotone if ∀P1,P2 : P1 ⊆ P2. Q(P1) ⇒ Q(P2).

• Q is downward monotone if ∀P1,P2 : P1 ⊆ P2. Q(P1) ⇐ Q(P2).

• Generalized quantifiers are functions from pairs of predicates to

truth values. To assess monotonicity, one must thus look at a

partially applied generalized quantifier. We’ll see how this works for

all on the next slide. 16

Quantifier monotonicity: the case of all (∀)

• Let’s consider Jall studentsK = λP. ∀x . student(x) ⇒ P(x). It is

the quantifier all partially applied to its restrictor (the set of

students). Is it monotone w.r.t. its nuclear scope argument?

• Let’s consider P1 = λx . french(x) and P2 = λx . european(x). We

have P1 ⊆ P2.

• Moreover, if all students are French then all students are European,

in other words, Jall studentsK(P1) ⇒ Jall studentsK(P2).

• All is upward monotone w.r.t. is nuclear scope.

• Let’s consider

λP. JallK(P)(JdeliciousK) = λP. ∀x . P(x) ⇒ delicious(x). It is the
quantifier all partially applied to its nuclear scope (the set of

delicious things). Is it monotone w.r.t. its restrictor?

• Let’s consider P1 = λx . choco-cookie(x) and P2 = λx . cookie(x).

We have P1 ⊆ P2.

• Moreover, if every cookie is delicious then every choco-cookie is too,

in other words, JallK(P1)(JdeliciousK) ⇐ JallK(P2)(JdeliciousK).
• All is downward monotone w.r.t. its restrictor.

17

Quantifier monotonicity: the case of all (∀)

• Let’s consider Jall studentsK = λP. ∀x . student(x) ⇒ P(x). It is

the quantifier all partially applied to its restrictor (the set of

students). Is it monotone w.r.t. its nuclear scope argument?

• Let’s consider P1 = λx . french(x) and P2 = λx . european(x). We

have P1 ⊆ P2.

• Moreover, if all students are French then all students are European,

in other words, Jall studentsK(P1) ⇒ Jall studentsK(P2).

• All is upward monotone w.r.t. is nuclear scope.

• Let’s consider

λP. JallK(P)(JdeliciousK) = λP. ∀x . P(x) ⇒ delicious(x). It is the
quantifier all partially applied to its nuclear scope (the set of

delicious things). Is it monotone w.r.t. its restrictor?

• Let’s consider P1 = λx . choco-cookie(x) and P2 = λx . cookie(x).

We have P1 ⊆ P2.

• Moreover, if every cookie is delicious then every choco-cookie is too,

in other words, JallK(P1)(JdeliciousK) ⇐ JallK(P2)(JdeliciousK).
• All is downward monotone w.r.t. its restrictor.

17

Quantifier monotonicity: the case of all (∀)

• Let’s consider Jall studentsK = λP. ∀x . student(x) ⇒ P(x). It is

the quantifier all partially applied to its restrictor (the set of

students). Is it monotone w.r.t. its nuclear scope argument?

• Let’s consider P1 = λx . french(x) and P2 = λx . european(x). We

have P1 ⊆ P2.

• Moreover, if all students are French then all students are European,

in other words, Jall studentsK(P1) ⇒ Jall studentsK(P2).

• All is upward monotone w.r.t. is nuclear scope.

• Let’s consider

λP. JallK(P)(JdeliciousK) = λP. ∀x . P(x) ⇒ delicious(x). It is the
quantifier all partially applied to its nuclear scope (the set of

delicious things). Is it monotone w.r.t. its restrictor?

• Let’s consider P1 = λx . choco-cookie(x) and P2 = λx . cookie(x).

We have P1 ⊆ P2.

• Moreover, if every cookie is delicious then every choco-cookie is too,

in other words, JallK(P1)(JdeliciousK) ⇐ JallK(P2)(JdeliciousK).
• All is downward monotone w.r.t. its restrictor.

17

Quantifier monotonicity: the case of all (∀)

• Let’s consider Jall studentsK = λP. ∀x . student(x) ⇒ P(x). It is

the quantifier all partially applied to its restrictor (the set of

students). Is it monotone w.r.t. its nuclear scope argument?

• Let’s consider P1 = λx . french(x) and P2 = λx . european(x). We

have P1 ⊆ P2.

• Moreover, if all students are French then all students are European,

in other words, Jall studentsK(P1) ⇒ Jall studentsK(P2).

• All is upward monotone w.r.t. is nuclear scope.

• Let’s consider

λP. JallK(P)(JdeliciousK) = λP. ∀x . P(x) ⇒ delicious(x). It is the
quantifier all partially applied to its nuclear scope (the set of

delicious things). Is it monotone w.r.t. its restrictor?

• Let’s consider P1 = λx . choco-cookie(x) and P2 = λx . cookie(x).

We have P1 ⊆ P2.

• Moreover, if every cookie is delicious then every choco-cookie is too,

in other words, JallK(P1)(JdeliciousK) ⇐ JallK(P2)(JdeliciousK).
• All is downward monotone w.r.t. its restrictor.

17

Quantifier monotonicity: the case of all (∀)

• Let’s consider Jall studentsK = λP. ∀x . student(x) ⇒ P(x). It is

the quantifier all partially applied to its restrictor (the set of

students). Is it monotone w.r.t. its nuclear scope argument?

• Let’s consider P1 = λx . french(x) and P2 = λx . european(x). We

have P1 ⊆ P2.

• Moreover, if all students are French then all students are European,

in other words, Jall studentsK(P1) ⇒ Jall studentsK(P2).

• All is upward monotone w.r.t. is nuclear scope.

• Let’s consider

λP. JallK(P)(JdeliciousK) = λP. ∀x . P(x) ⇒ delicious(x). It is the
quantifier all partially applied to its nuclear scope (the set of

delicious things). Is it monotone w.r.t. its restrictor?

• Let’s consider P1 = λx . choco-cookie(x) and P2 = λx . cookie(x).

We have P1 ⊆ P2.

• Moreover, if every cookie is delicious then every choco-cookie is too,

in other words, JallK(P1)(JdeliciousK) ⇐ JallK(P2)(JdeliciousK).
• All is downward monotone w.r.t. its restrictor.

17

Quantifier monotonicity: the case of all (∀)

• Let’s consider Jall studentsK = λP. ∀x . student(x) ⇒ P(x). It is

the quantifier all partially applied to its restrictor (the set of

students). Is it monotone w.r.t. its nuclear scope argument?

• Let’s consider P1 = λx . french(x) and P2 = λx . european(x). We

have P1 ⊆ P2.

• Moreover, if all students are French then all students are European,

in other words, Jall studentsK(P1) ⇒ Jall studentsK(P2).

• All is upward monotone w.r.t. is nuclear scope.

• Let’s consider

λP. JallK(P)(JdeliciousK) = λP. ∀x . P(x) ⇒ delicious(x). It is the
quantifier all partially applied to its nuclear scope (the set of

delicious things). Is it monotone w.r.t. its restrictor?

• Let’s consider P1 = λx . choco-cookie(x) and P2 = λx . cookie(x).

We have P1 ⊆ P2.

• Moreover, if every cookie is delicious then every choco-cookie is too,

in other words, JallK(P1)(JdeliciousK) ⇐ JallK(P2)(JdeliciousK).
• All is downward monotone w.r.t. its restrictor.

17

Quantifier monotonicity: the case of all (∀)

• Let’s consider Jall studentsK = λP. ∀x . student(x) ⇒ P(x). It is

the quantifier all partially applied to its restrictor (the set of

students). Is it monotone w.r.t. its nuclear scope argument?

• Let’s consider P1 = λx . french(x) and P2 = λx . european(x). We

have P1 ⊆ P2.

• Moreover, if all students are French then all students are European,

in other words, Jall studentsK(P1) ⇒ Jall studentsK(P2).

• All is upward monotone w.r.t. is nuclear scope.

• Let’s consider

λP. JallK(P)(JdeliciousK) = λP. ∀x . P(x) ⇒ delicious(x). It is the
quantifier all partially applied to its nuclear scope (the set of

delicious things). Is it monotone w.r.t. its restrictor?

• Let’s consider P1 = λx . choco-cookie(x) and P2 = λx . cookie(x).

We have P1 ⊆ P2.

• Moreover, if every cookie is delicious then every choco-cookie is too,

in other words, JallK(P1)(JdeliciousK) ⇐ JallK(P2)(JdeliciousK).
• All is downward monotone w.r.t. its restrictor.

17

Quantifier monotonicity: the case of all (∀)

• Let’s consider Jall studentsK = λP. ∀x . student(x) ⇒ P(x). It is

the quantifier all partially applied to its restrictor (the set of

students). Is it monotone w.r.t. its nuclear scope argument?

• Let’s consider P1 = λx . french(x) and P2 = λx . european(x). We

have P1 ⊆ P2.

• Moreover, if all students are French then all students are European,

in other words, Jall studentsK(P1) ⇒ Jall studentsK(P2).

• All is upward monotone w.r.t. is nuclear scope.

• Let’s consider

λP. JallK(P)(JdeliciousK) = λP. ∀x . P(x) ⇒ delicious(x). It is the
quantifier all partially applied to its nuclear scope (the set of

delicious things). Is it monotone w.r.t. its restrictor?

• Let’s consider P1 = λx . choco-cookie(x) and P2 = λx . cookie(x).

We have P1 ⊆ P2.

• Moreover, if every cookie is delicious then every choco-cookie is too,

in other words, JallK(P1)(JdeliciousK) ⇐ JallK(P2)(JdeliciousK).
• All is downward monotone w.r.t. its restrictor.

17

Bonus: quantification in object

position, and scope ambiguity

A case of semantic ambiguity

• The sentence:

(17) Every boy admires some girl.

• Has 2 readings: one in which each boy admires a different girl

(“∀ > ∃”), and one in which there is a single girl s.t. each boy

admires her (“∃ > ∀”). How to derive those 2 readings?

• First problem: there is no obvious way of combining the quantified

NP some girl in the object position to the 2-place predicate admire:

type-mismatch!

(e → t) → t

Every boy

????

admires

e → e → t

(e → t) → t

some

(e → t) → (e → t) → t

girl

(e → t)

• Ideally, we’d like something of type e in place of some girl... 18

A case of semantic ambiguity

• The sentence:

(18) Every boy admires some girl.

• Has 2 readings: one in which each boy admires a different girl

(“∀ > ∃”), and one in which there is a single girl s.t. each boy

admires her (“∃ > ∀”). How to derive those 2 readings?

• First problem: there is no obvious way of combining the quantified

NP some girl in the object position to the 2-place predicate admire:

type-mismatch!

(e → t) → t

Every boy

????

admires

e → e → t

(e → t) → t

some

(e → t) → (e → t) → t

girl

(e → t)

• Ideally, we’d like something of type e in place of some girl... 18

A case of semantic ambiguity

• The sentence:

(19) Every boy admires some girl.

• Has 2 readings: one in which each boy admires a different girl

(“∀ > ∃”), and one in which there is a single girl s.t. each boy

admires her (“∃ > ∀”). How to derive those 2 readings?

• First problem: there is no obvious way of combining the quantified

NP some girl in the object position to the 2-place predicate admire:

type-mismatch!

(e → t) → t

Every boy

????

admires

e → e → t

(e → t) → t

some

(e → t) → (e → t) → t

girl

(e → t)

• Ideally, we’d like something of type e in place of some girl... 18

A case of semantic ambiguity

• The sentence:

(20) Every boy admires some girl.

• Has 2 readings: one in which each boy admires a different girl

(“∀ > ∃”), and one in which there is a single girl s.t. each boy

admires her (“∃ > ∀”). How to derive those 2 readings?

• First problem: there is no obvious way of combining the quantified

NP some girl in the object position to the 2-place predicate admire:

type-mismatch!

(e → t) → t

Every boy

????

admires

e → e → t

(e → t) → t

some

(e → t) → (e → t) → t

girl

(e → t)

• Ideally, we’d like something of type e in place of some girl... 18

Resolving type-mismatch, and deriving the ∃ > ∀ reading

t

(e → t) → t

some

(e → t) → (e → t) → t

girl

(e → t)

e→t

OPx t

(e → t) → t

every boy

e→t

admires

e → e → t

x

e

• To resolve the type-mismatch, we moved the quantified NP some

girl to the top of the tree, and replaced its “trace” by an e-type

variable x . We also introduced a λ-abstractor OPx binding x and

changing its input sentence back into a predicate (type shifting):5

JOPxK = λS . λx . S

5This is a very simplified account of binding. A proper account would involve indices and

assignment functions.
19

Resolving type-mismatch, and deriving the ∃ > ∀ reading

t

(e → t) → t

some

(e → t) → (e → t) → t

girl

(e → t)

e→t

OPx t

(e → t) → t

every boy

e→t

admires

e → e → t

x

e

• To resolve the type-mismatch, we moved the quantified NP some

girl to the top of the tree, and replaced its “trace” by an e-type

variable x . We also introduced a λ-abstractor OPx binding x and

changing its input sentence back into a predicate (type shifting):5

JOPxK = λS . λx . S

5This is a very simplified account of binding. A proper account would involve indices and

assignment functions.
19

Resolving type-mismatch, and deriving the ∃ > ∀ reading

t

(e → t) → t

some

(e → t) → (e → t) → t

girl

(e → t)

e→t

OPx t

(e → t) → t

every boy

e→t

admires

e → e → t

x

e

J every boy admires x K = 1 iff ∀y . boy(y) ⇒ admire(y)(x)

J OPx every boy admires x K = λx . ∀y . boy(y) ⇒ admire(y)(x)

J Some girl ... admires x K = 1 iff ∃z . girl(z) ∧ (λx . ∀y . boy(y) ⇒ admire(y)(x))(z)

= 1 iff ∃z . girl(z) ∧ ∀y . boy(y) ⇒ admire(y)(z)

• That is the reading according to which there is one girl that every boy

admires. To get the other reading, we need to do one more thing. 20

Resolving type-mismatch, and deriving the ∃ > ∀ reading

t

(e → t) → t

some

(e → t) → (e → t) → t

girl

(e → t)

e→t

OPx t

(e → t) → t

every boy

e→t

admires

e → e → t

x

e

J every boy admires x K = 1 iff ∀y . boy(y) ⇒ admire(y)(x)

J OPx every boy admires x K = λx . ∀y . boy(y) ⇒ admire(y)(x)

J Some girl ... admires x K = 1 iff ∃z . girl(z) ∧ (λx . ∀y . boy(y) ⇒ admire(y)(x))(z)

= 1 iff ∃z . girl(z) ∧ ∀y . boy(y) ⇒ admire(y)(z)

• That is the reading according to which there is one girl that every boy

admires. To get the other reading, we need to do one more thing. 20

Resolving type-mismatch, and deriving the ∃ > ∀ reading

t

(e → t) → t

some

(e → t) → (e → t) → t

girl

(e → t)

e→t

OPx t

(e → t) → t

every boy

e→t

admires

e → e → t

x

e

J every boy admires x K = 1 iff ∀y . boy(y) ⇒ admire(y)(x)

J OPx every boy admires x K = λx . ∀y . boy(y) ⇒ admire(y)(x)

J Some girl ... admires x K = 1 iff ∃z . girl(z) ∧ (λx . ∀y . boy(y) ⇒ admire(y)(x))(z)

= 1 iff ∃z . girl(z) ∧ ∀y . boy(y) ⇒ admire(y)(z)

• That is the reading according to which there is one girl that every boy

admires. To get the other reading, we need to do one more thing. 20

Resolving type-mismatch, and deriving the ∃ > ∀ reading

t

(e → t) → t

some

(e → t) → (e → t) → t

girl

(e → t)

e→t

OPx t

(e → t) → t

every boy

e→t

admires

e → e → t

x

e

J every boy admires x K = 1 iff ∀y . boy(y) ⇒ admire(y)(x)

J OPx every boy admires x K = λx . ∀y . boy(y) ⇒ admire(y)(x)

J Some girl ... admires x K = 1 iff ∃z . girl(z) ∧ (λx . ∀y . boy(y) ⇒ admire(y)(x))(z)

= 1 iff ∃z . girl(z) ∧ ∀y . boy(y) ⇒ admire(y)(z)

• That is the reading according to which there is one girl that every boy

admires. To get the other reading, we need to do one more thing. 20

Resolving type-mismatch, and deriving the ∀ > ∃ reading

t

(e → t) → t

every boy

e→t

OPy t

(e → t) → t

some

(e → t) → (e → t) → t

girl

(e → t)

e→t

OPx t

y

e

e→t

admires

e → e → t

x

e

• We have now moved every boy to the top of the tree (above some

girl) and replaced its “trace” by an e-type variable y bound by an

abstractor OPy ... 21

Quantification in object position: the ∀ > ∃ reading

t

(e → t) → t

every boy

e→t

OPy t

(e → t) → t

some

(e → t) → (e → t) → t

girl

(e → t)

e→t

OPx t

y

e

e→t

admires

e → e → t

x

e

Jy admires xK = 1 iff admires(y)(x)

JOPx y admires xK = λx . admires(y)(x)

Jsome girl ... admires xK = 1 iff ∃x . girl(x) ∧ admires(y)(x)

JOPy some girl ... admires xK = λy . ∃x . girl(x) ∧ admires(y)(x)

Jevery boy ... admires xK = 1 iff ∀y . boy(y) ⇒ ∃x . girl(x) ∧ admires(y)(x)
22

Quantification in object position: the ∀ > ∃ reading

t

(e → t) → t

every boy

e→t

OPy t

(e → t) → t

some

(e → t) → (e → t) → t

girl

(e → t)

e→t

OPx t

y

e

e→t

admires

e → e → t

x

e

Jy admires xK = 1 iff admires(y)(x)

JOPx y admires xK = λx . admires(y)(x)

Jsome girl ... admires xK = 1 iff ∃x . girl(x) ∧ admires(y)(x)

JOPy some girl ... admires xK = λy . ∃x . girl(x) ∧ admires(y)(x)

Jevery boy ... admires xK = 1 iff ∀y . boy(y) ⇒ ∃x . girl(x) ∧ admires(y)(x)
22

Take away

• We derived the desired semantic scope ambiguity by moving the

quantified NPs to the top of the tree. This is known as quantifier

raising (QR). Semantic ambiguity was thus cashed out as some

form of structural ambiguity in the tree.

• This might sound fishy, especially given that this kind of movement

is not audible, and that the quantified NPs do not have the same

type as their traces ((e→t)→t vs. e).

• However, recall QR was originally motivated by a type issue posed

by the quantifier some girl interpreted in the object position.

• There might be other solutions to this puzzle, in particular solutions

making use of covert type-shifting operators instead of movement.

But the analysis we gave here is widely accepted and remains

relatively tractable.

23

Take away

• We derived the desired semantic scope ambiguity by moving the

quantified NPs to the top of the tree. This is known as quantifier

raising (QR). Semantic ambiguity was thus cashed out as some

form of structural ambiguity in the tree.

• This might sound fishy, especially given that this kind of movement

is not audible, and that the quantified NPs do not have the same

type as their traces ((e→t)→t vs. e).

• However, recall QR was originally motivated by a type issue posed

by the quantifier some girl interpreted in the object position.

• There might be other solutions to this puzzle, in particular solutions

making use of covert type-shifting operators instead of movement.

But the analysis we gave here is widely accepted and remains

relatively tractable.

23

Take away

• We derived the desired semantic scope ambiguity by moving the

quantified NPs to the top of the tree. This is known as quantifier

raising (QR). Semantic ambiguity was thus cashed out as some

form of structural ambiguity in the tree.

• This might sound fishy, especially given that this kind of movement

is not audible, and that the quantified NPs do not have the same

type as their traces ((e→t)→t vs. e).

• However, recall QR was originally motivated by a type issue posed

by the quantifier some girl interpreted in the object position.

• There might be other solutions to this puzzle, in particular solutions

making use of covert type-shifting operators instead of movement.

But the analysis we gave here is widely accepted and remains

relatively tractable.

23

Take away

• We derived the desired semantic scope ambiguity by moving the

quantified NPs to the top of the tree. This is known as quantifier

raising (QR). Semantic ambiguity was thus cashed out as some

form of structural ambiguity in the tree.

• This might sound fishy, especially given that this kind of movement

is not audible, and that the quantified NPs do not have the same

type as their traces ((e→t)→t vs. e).

• However, recall QR was originally motivated by a type issue posed

by the quantifier some girl interpreted in the object position.

• There might be other solutions to this puzzle, in particular solutions

making use of covert type-shifting operators instead of movement.

But the analysis we gave here is widely accepted and remains

relatively tractable.

23

References i

Allen, M. R. (1978).

Morphological investigations.

PhD thesis, University of Connecticut.

Kamp, H. (1973).

Free choice permission.

Proceedings of the Aristotelian Society, 74(1):57–74.

Pustejovsky, J. (1995).

The Generative Lexicon.

MIT Press, Cambridge, MA.

Quine, W. V. (1956).

Quantifiers and propositional attitudes.

The Journal of Philosophy, 53(5):177.

von Fintel, K. and Iatridou, S. (2007).

Anatomy of a modal construction.

Linguistic Inquiry, 38(3):445–483.

24

	Introduction, and some technical background
	Deriving the meaning of simple sentences
	Quantification
	Bonus: quantification in object position, and scope ambiguity

