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Today's agenda
• Review principles of rational analysis and its application 

to theory of language comprehension 
• Examine a phenomenon challenging for surprisal theory 
• Propose a noisy-channel processing theory, using 

information theory and probabilistic grammars 
• Develop a hypothesis within the theory for the challenging 

phenomenon 
• Empirically test a key prediction of the theory
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Rational analysis
• Background assumption: cognitive agent is optimized via 

evolution and learning to solve everyday tasks effectively
1. Specify precisely the goals of the cognitive system
2. Formalize model of the environment adapted to
3. Make minimal assumptions re: computational limitations
4. Derive predicted optimal behavior given 1—3
5. Compare predictions with empirical data
6. If necessary, iterate 1—5

4(Anderson, 1990, 1991)



Efficient comprehension as rational, goal-driven 
• Online sentence comprehension is hard 
• But lots of information sources can be usefully brought to 

bear to help with the task 
• Therefore, it would be rational for people to use all  

information sources available, whenever possible 
• This is what incrementality is 
• We have lots of evidence that people do this often 
• How do we reconcile these information sources?

“Put the apple on the towel in the box.”   (Tanenhaus et al., 1995, Science)
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Problems addressed by a theory consisting of:
• Bayesian inference

• Probabilistic grammar

• Surprisal

Surprisal summary: psycholinguistic evidence

P (Str|Input) / P (Input|Str)P (Str)

• Global disambiguation

• Garden-pathing

• Prediction & reading times

When the dog scratched the vet removed the muzzle.
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Syntax-like surprisal from deep-learning models 

removed

(Futrell et al. 2019, NAACL)
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An incremental inference puzzle for surprisal
• Try to understand this sentence:
 (a) The coach smiled at the player tossed the frisbee.

…and contrast this with:

 (b) The coach smiled at the player thrown the frisbee.

 (c) The coach smiled at the player who was thrown the frisbee.

 (d) The coach smiled at the player who was tossed the frisbee.

• Readers boggle at “tossed” in (a), but not in (b-d)

9Tabor et al. (2004, JML)

RT spike in (a)
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Why is tossed/thrown interesting?
• As with classic garden-paths, part-of-speech ambiguity leads 

to misinterpretation 
• The woman brought the sandwich…tripped

• But now context “should” rule out the garden path:
• The coach smiled at the player tossed…

• A challenge for rational models: failure to condition on 
relevant context
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Uncertain input in language comprehension
• Previous state of the art models for ambiguity resolution ≈ 

probabilistic incremental parsing 
• Simplifying assumption:  

• Input is clean and perfectly-formed 
• No uncertainty about input is admitted

• Intuitively seems patently wrong… 
• We sometimes misread things 
• We can also proofread

• Leads to two questions: 
1. What might a model of sentence comprehension under 

uncertain input look like? 
2. What interesting consequences might such a model have?
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Representing noisy input
• How can we represent the type of noisy input generated 

by a word sequence?
• Probabilistic finite-state automata (pFSAs; Mohri, 1997) are a 

good model

• “Word 1 is a or b, and I have no info about Word 2”

14

Input symbol
Log-probability 

(surprisal)

vocab = a,b,c,d,e,f
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Weighted Finite-State Automata (WFSAs)
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A weighted finite-state automaton (WFSA) consists of a
tuple (Q,V , S ,R) such that:

! Q is a finite set of states q0q1 . . . qN , with q0 the designated
start state;

! Σ is a finite set of terminal symbols;

! F ⊆ Q is the set of final states;

! ∆ is a finite set of transitions each of the form q
i
" q′,

meaning that “if you are in state q and see symbol i you can
consume it and move to state q′”;

! λ is a function mapping transitions to real numbers (weights);

! ρ is a function mapping final states to real numbers (weights).
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Weighted Finite-State Automata (WFSAs)
! Q is a finite set of states q0q1 . . . qN , with q0 the designated start state;

! Σ is a finite set of terminal symbols;

! F ⊆ Q is the set of final states;

! ∆ is a finite set of transitions each of the form q
i
" q′, meaning that “if you are in state q and see

symbol i you can consume it and move to state q′”;

! λ is a function mapping transitions to real numbers (weights);

! ρ is a function mapping final states to real numbers (weights).

! w1...N ∈ ΣN is accepted or recognized by an automaton iff
there is a path of transitions "

1...N
to a final state q∗ ∈ F such that

q0
w1
"
1

w2
"
2
. . .

wN−1
"
N−1

wN
"
N

q∗

! The weight of such a path "
1...N

is the product of the weights of

each of the transitions, together with the weight of the final state:

P(q0
w1
"
1

w2
"
2
. . .

wN−1
"
N−1

wN
"
N

q∗) = ρ(q∗)
N∏

i=1

λ("
i
) (1)
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Combining grammar & uncertain input
• Bayes’ Rule says that the evidence and the prior should 

be combined (multiplied) 
• For probabilistic grammars, this combination is the formal 

operation of weighted intersection

=
BELIEF

Grammar 
affects 
beliefs 
about the 
future



Revising beliefs about the past
• When we’re uncertain about the future, grammar + partial 

input can affect beliefs about what will happen  
• With uncertainty of the past, grammar + future input can 

affect beliefs about what has already happened



grammar



–b,c} –?}
grammarword 1



–b,c} –?}
grammarword 1



–b,c} –?} –b,c} –f,e}
grammarword 1 words 1 + 2



–b,c} –?} –b,c} –f,e}
grammarword 1 words 1 + 2



–b,c} –?} –b,c} –f,e}
grammarword 1 words 1 + 2



The noisy-channel model (FINAL)

P (w|w�) � PC(w)Q(w,w�)



The noisy-channel model (FINAL)

P (w|w�) � PC(w)Q(w,w�)

Prior



The noisy-channel model (FINAL)

P (w|w�) � PC(w)Q(w,w�)

Prior Expected evidence



The noisy-channel model (FINAL)

• For Q(w,w*): a WFSA based on Levenshtein distance 
between words (KLD):

P (w|w�) � PC(w)Q(w,w�)

Prior Expected evidence



The noisy-channel model (FINAL)

• For Q(w,w*): a WFSA based on Levenshtein distance 
between words (KLD):

P (w|w�) � PC(w)Q(w,w�)

Result of KLD applied to w* = a cat sat 

Prior Expected evidence



The noisy-channel model (FINAL)

• For Q(w,w*): a WFSA based on Levenshtein distance 
between words (KLD):

P (w|w�) � PC(w)Q(w,w�)

Result of KLD applied to w* = a cat sat 

Prior Expected evidence

Cost(a cat sat)=0



The noisy-channel model (FINAL)

• For Q(w,w*): a WFSA based on Levenshtein distance 
between words (KLD):

P (w|w�) � PC(w)Q(w,w�)

Result of KLD applied to w* = a cat sat 

Prior Expected evidence

Cost(a cat sat)=0

Cost(sat a sat cat)=8



Rational analysis
• Background assumption: cognitive agent is optimized via 

evolution and learning to solve everyday tasks effectively 
1. Specify precisely the goals of the cognitive system 
2. Formalize model of the environment adapted to 
3. Make minimal assumptions re: computational limitations 
4. Derive predicted optimal behavior given 1—3 
5. Compare predictions with empirical data 
6. If necessary, iterate 1—5

22(Anderson, 1990, 1991)



Incremental inference under uncertain input

The coach smiled at the player tossed the frisbee



Incremental inference under uncertain input

• Near-neighbors make the “incorrect” analysis “correct”: 

The coach smiled at the player tossed the frisbee



Incremental inference under uncertain input

• Near-neighbors make the “incorrect” analysis “correct”: 

The coach smiled at the player tossed the frisbee

(and?)



Incremental inference under uncertain input

• Near-neighbors make the “incorrect” analysis “correct”: 

The coach smiled at the player tossed the frisbee
(as?)

(and?)



Incremental inference under uncertain input

• Near-neighbors make the “incorrect” analysis “correct”: 

The coach smiled at the player tossed the frisbee
(as?)

(and?)
(and?)



Incremental inference under uncertain input

• Near-neighbors make the “incorrect” analysis “correct”: 

The coach smiled at the player tossed the frisbee
(as?)

(and?) (that?)
(and?)



Incremental inference under uncertain input

• Near-neighbors make the “incorrect” analysis “correct”: 

The coach smiled at the player tossed the frisbee
(as?)

(and?)
(who?)
(that?)
(and?)



Incremental inference under uncertain input

• Near-neighbors make the “incorrect” analysis “correct”: 

The coach smiled at the player tossed the frisbee
(as?)

(and?)
(who?)
(that?)(that?)
(and?)



Incremental inference under uncertain input

• Near-neighbors make the “incorrect” analysis “correct”: 

The coach smiled at the player tossed the frisbee
(as?)

(and?)
(who?)
(that?)

(who?)
(that?)

(and?)



Incremental inference under uncertain input

• Near-neighbors make the “incorrect” analysis “correct”: 
Any of these changes 
makes tossed a main 
verb!!!

The coach smiled at the player tossed the frisbee
(as?)

(and?)
(who?)
(that?)

(who?)
(that?)

(and?)



Incremental inference under uncertain input

• Near-neighbors make the “incorrect” analysis “correct”: 

• Hypothesis: the boggle at “tossed” involves what the 
comprehender wonders whether she might have seen

Any of these changes 
makes tossed a main 
verb!!!

The coach smiled at the player tossed the frisbee
(as?)

(and?)
(who?)
(that?)

(who?)
(that?)

(and?)
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evolution and learning to solve everyday tasks effectively 
1. Specify precisely the goals of the cognitive system 
2. Formalize model of the environment adapted to 
3. Make minimal assumptions re: computational limitations 
4. Derive predicted optimal behavior given 1—3 
5. Compare predictions with empirical data 
6. If necessary, iterate 1—5
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The core of the intuition
• Grammar & input come together to determine two possible 

“paths” through the partial sentence:

• tossed is more likely to happen along the bottom path 
• This creates a large shift in belief in the tossed condition

• thrown is very unlikely to happen along the bottom path 
• As a result, there is no corresponding shift in belief

the coach smiled…

at 
(likely)

…the player…

as/and 
(unlikely)

…the player…

thrown

thrown

(line thickness ≈ probability)
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Ingredients for the model

• Q(w,w*) comes from KLD (with minor changes)

• PC(w) comes from a probabilistic grammar (this time 
finite-state)

• We need one more ingredient: 
• a quantified signal of the alarm induced by word wi about 

changes in beliefs about the past

Prior Expected evidence
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• Relative Entropy (KL-divergence) is a natural metric of 
change in a probability distrib. (Levy, 2008; Itti & Baldi, 2005)

• Our distribution of interest is probabilities over the 
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EIS greater for the variant 
humans boggle more on

(All sentences of Tabor et al. 2004 with lexical coverage in model)



Today's summary
• Reviewed principles of rational analysis and its 

application to theory of language comprehension 
• Examined a phenomenon challenging for surprisal theory 
• Proposed a noisy-channel processing theory, using 

information theory and probabilistic grammars 
• Developed a hypothesis within the theory for the 

challenging phenomenon 
•

29
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Prediction 2: hallucinated garden paths
• Try reading the sentence below: 

While the clouds crackled, above the glider soared a magnificent eagle.

• There’s a garden-path clause in this sentence…
• …but it’s interrupted by a comma.
• Readers are ordinarily very good at using commas to 

guide syntactic analysis: 
While the man hunted, the deer ran into the woods 
While Mary was mending the sock fell off her lap 

• “With a comma after mending there would be no syntactic 
garden path left to be studied.” (Fodor, 2002)

• We’ll see that the story is slightly more complicated.
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• …and then a main clause with locative inversion.  
(c.f. a magnificent eagle soared above the glider)
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• …but doing that would require the comma to be ignored.
• Inferences through …glider should thus involve a tradeoff 

between perceptual input and prior expectations
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Prediction 2: Hallucinated garden paths
• Methodology: word-by-word self-paced reading

• Readers aren’t allowed to backtrack
• So the comma is visually gone by the time the inverted 

main clause appears
• Simple test of whether beliefs about previous input can be 

revised

-----------------------------------------------------------------------While ---------------------------------------------------------------------- the ---------------------------------------------------------------------- clouds ---------------------------------------------------------------------- crackled, ---------------------------------------------------------------------- above ---------------------------------------------------------------------- the ---------------------------------------------------------------------- glider ---------------------------------------------------------------------- soared --------------------
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Hallucinated garden-path summary
• The at/toward study showed that comprehenders note the 

possibility of alternative strings and act on it 
• This study showed that comprehenders can actually 

devote resources to grammatical analyses inconsistent 
with the surface string 

38
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• We use a contextual bias against NN and toward NV to 

test for GP hallucinations involving wordform change

The intern chauffeur for the governor hoped for more interesting work.           
[NN, “dense” neighborhood]

The intern chauffeured for the governor but hoped for more interesting work. 
[NV, “dense” neighborhood]

The inexperienced chauffeur for the governor hoped for more interesting work. 
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Some interns chauffeured for the governor but hoped for more interesting work. 
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40(Bergen, Levy, & Gibson, 2012)

Could be “intern chauffeured”

Could NOT be “inexperienced chauffeured”
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Noisy-channel theory of language processing

Information
Source

Intended
message

Utterance

Transmitter Receiver

Input &
Memory

Destination

Inferred
message

Noise
Source

Production Signal Received
Signal

Comprehension

Prior: P (m)
Speaker likelihood:

P (u|m)
Input likelihood:

P (I|u)
Posterior:

P (m|I) / P (I|m)P (m)

P (u|I) / P (I|u)P (u)

(Shannon, 1948; Levy, 2008; Gibson et al., 2013)
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Simple question-answering
The woman lost the diamond.

Did the woman lose something?

The ball kicked the girl.

Did the girl kick something?

The businessman benefited from the tax law.

Did the tax law benefit from anything? 

The cook baked a cake Lucy.

Was something baked for Lucy?

43

Yes

No

No

No (Yes?)

(Ferreira, 2003; Gibson et al., 2013) Over 2/3 of answers!
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The cook baked a cake Lucy.

In two semantically plausible "neighbor" sentences, the answer is 
"yes":

Was something baked for Lucy?
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47(Gibson et al., 2013; plausible versions not shown here)

c=inferred insertion   d=inferred deletion
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Inferring deletions versus insertions

49

P(m | I) ∝ P(I |m)P(m)
PlausibilityNoise operation

The cook baked Lucy a cake.

The cook baked a cake for Lucy.
1 Delete 2 Choose deletion location

1 Insert 2 Choose insertion location

for3 Choose what to insert

Noisy-channel prediction: inferring deletions should be intrinsically easier 
than inferring insertions!

The cook baked a cake Lucy.

The cook baked Lucy for a cake.
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In the real world (2008)

51

Sarah Palin (images credit Gage Skidmore)
CC BY-SA

I’m	not	going	to	solely	
blame	all	of	man’s	activities	

on	changes	in	climate.

I'm	not	one	to	attribute	every	activity	
of	man	to	climate	change.

(Credit to Colin Phillips for bringing these examples to light)



Corpora of speech errors

52(Fromkin, 1971; Garrett, 1975, inter alia)

Anticipations
John dropped his cuff of coffee 

reek long race

Perseverations
John gave the goy (=gave the boy) 

Spanish speaping people 

Exchanges

teep a cape (=keep a tape)  

the nipper is zarrow  

Fancy getting your model renosed (=nose remodeled)
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(Poppels & Levy 2016)
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• An occasional speech error of mine that I’ve noticed for years, 
but that no one ever notices me make

• Extraordinarily unlikely under an insertions/deletions noise 
model

• But reasonably likely if word exchanges are admitted

This is a problem that I need to talk about Joe with.

(Poppels & Levy 2016)

Did something fall to the floor?



Exchanges in the noise model

54
(Poppels & Levy 2016)
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The ball was kicked by the girl.
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"The	actor	handed	the	
director	to	the	script."

"The	bowl	broke	the	
grandfather."

"The	corrupt	poli8cians	
profited	the	bribes."
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Noisy-channel interpretation summary
• The noisy-channel framework suggests investigating 
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The chef who the waiter who the busboy offended appreciated admired 
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• These contexts are more common in German than English (Roland 
et al., 2007).
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• Futrell & Levy (2017) demonstrate that this works for toy 
grammars of English and German.

NOUN VERB

Rule Probability

S -> NP VERB 1

NP -> NOUN 1-m

NP -> NOUN RC mr

NP -> NOUN PP m(1-r)

PP -> PREP NP 1

RC -> THAT VERB NP s

RC -> THAT NP VERB 1-s

NOUN PREP NOUN VERB

NOUN THAT VERB NOUN VERB

NOUN THAT NOUN VERB VERB

NOUN THAT NOUN THAT NOUN…

(Slide courtesy Richard Futrell)

Plus deletion noise: every token in the context is forgotten (deleted) with probability d
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Vasishth et al. (2010)
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Robustness to choice of model parameters

69(Futrell & Levy, 2017)

m
s
d

Modifier probability
Probability of English RC being verb-final
Probability of context token deletion

= English+German-like pattern



Noisy-Context Surprisal Account of Structural Forgetting

(Slide courtesy Richard Futrell)



Noisy-Context Surprisal Account of Structural Forgetting

• Probability that a context is remembered depends on 
its prior probability. 
• Noisy-context surprisal explains the behavior of 

the RNN in Frank et al. (2016): the RNN is using a 
lossily compressed / noisy representation of 
context.

(Slide courtesy Richard Futrell)



Noisy-Context Surprisal Account of Structural Forgetting

• Probability that a context is remembered depends on 
its prior probability. 
• Noisy-context surprisal explains the behavior of 

the RNN in Frank et al. (2016): the RNN is using a 
lossily compressed / noisy representation of 
context.

• The model has an explicit grammar (competence), 
but cannot apply it correctly (performance).

(Slide courtesy Richard Futrell)
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Noisy-Context Surprisal Account of Structural Forgetting

• We demonstrate that this works for toy grammars of  
English and German.

NOUN VERB

Rule Probability

S -> NP VERB 1

NP -> NOUN 1-m

NP -> NOUN RC mr

NP -> NOUN PP m(1-r)

PP -> PREP NP 1

RC -> THAT VERB NP s

RC -> THAT NP VERB 1-s

NOUN PREP NOUN VERB

NOUN THAT VERB NOUN VERB

NOUN THAT NOUN VERB VERB

NOUN THAT NOUN THAT NOUN…
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Vasishth et al. (2010)
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Noisy-Context Surprisal Account of Structural Forgetting

• Probability that a context is remembered depends on 
its prior probability. 
• Noisy-context surprisal explains the behavior of 

the RNN in Frank et al. (2016): the RNN is using a 
lossily compressed / noisy representation of 
context.

• The model has an explicit grammar (competence), 
but cannot apply it correctly (performance).

81
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Dependency length and noisy-channel surprisal
• Syntactic dependencies vary in linear distance

• Idea with long history: short dependencies preferred

82(Hawkins, 1994; Gibson, 1998, 2000; Gildea & Temperley, 2007, 2009; Park & Levy, 2009; Futrell et al., 2015)

Random-linearization 
dependency lengths

Observed dependency 
lengths



83

(Futrell et al., 2015)
Dependency lengths are short across languages!



Dependency lengths and the noisy channel
• Here: dependency length minimization can be derived 

from a combination of surprisal & noisy-channel theory

84(Futrell & Levy, 2017)

Richard Futrell
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From noisy-channel & surprisal to dependency length 
minimization

• Suppose we have an increasing noise rate the longer a word 
has been in memory.

• When "threw" is far from "out", then it is less likely to reduce the 
surprisal of "out": more likely to be affected by noise.

• Noisy-context surprisal increases when words that predict each 
other are far apart. 

• We call this information locality (following Gildea & Jaeger, 
2015). 

context
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85
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John threw

(Futrell & Levy, 2017)
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X
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P (w0 not erased)pmi(w;w0)≈
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111110111101001010000100101000101000001101
010101100101101000011100111101110001010101
111010110010100000001010111001001100100110
101011001100010101001001101010011010010010

P(threw not erased) pmi(threw; out)

C

outthrew

• When context items are far, their 
cost-reducing influence decreases.

• Similar to the concept of decay in 
cue effectiveness  
(Qian & Jaeger, 2012)
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Information Locality

• Information locality: prediction of processing difficulty when 
words that predict each other (have high mutual information) are 
far apart.

• How does this relate to dependency locality?
• Hypothesis: Words in syntactic dependencies have high 

mutual information.
• If this is true, then we can see dependency locality effects as 

a subset of information locality effects.
• We will show that the hypothesis is true in dependency corpora.

89(Futrell & Levy, 2017)
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Do Dependencies Have High Mutual Information?

• We calculated mutual information values over part-of-speech 
tags for pairs of words in the UD corpora.
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Comprehension as exploration of input
• Broader ongoing goal: develop eye-movement control 

model integrating the insights discussed thus far: 
• Probabilistic linguistic knowledge 
• Uncertain input representations 
• Principles of adaptive, rational action 

• Reinforcement learning is an attractive tool for this

(Bicknell & Levy, 2010, 2012ab)



A rational reader
• Very simple framework: 

• Start w/ prior expectations for text (linguistic knowledge) 

• Move eyes to get perceptual input 

• Update beliefs about text as visual arrives (Bayes’ Rule) 

• Add to that: 

• Set of actions the reader can take in discrete time 

• A behavior policy: how the model decides between actions

(Bicknell & Levy, 2010, 2012)
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A first-cut behavior policy
• Actions: keep fixating; move the eyes; or stop reading
• Simple behavior policy with two parameters: α and β
• Define confidence in a character position as the 

probability of the most likely character

• Move left to right, bringing up confidence in each 
character position until it reaches α

• If confidence in a previous character position drops below 
β, regress to it

• Finish reading when you’re confident in everything

From the closet, she pulled out a *acket for the upcoming game
P(jacket)=0.38 
P(racket)=0.59 
P(packet)=0.02 
...

Confidence=0.59
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reading the the Schilling et al. (1998) corpus 

Non-regressive policies 
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Goal-based adaptation
• Open frontier: modeling the adaptation of eye movements 

to specific reader goals

• We set a reward function: relative value γ of speed (finish 
reading in T timesteps) versus accuracy (guess correct 
sentence with probability L)

• PEGASUS simplex-based optimization (Ng & Jordan, 2000)

• The method works, and gives intuitive results

γ α β Timesteps Accuracy
0.025 0.90 0.99 41.2 P(correct)=0.98
0.1 0.36 0.80 25.8 P(correct)=0.41
0.4 0.18 0.38 16.4 P(correct)=0.01

(Bicknell & Levy, 2010)



Empirical match with human reading
• Benchmark measures in eye-movement modeling:

predictability Bicknell & Levy (2012)
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Success at empirical benchmarks
• Other models (E-Z Reader, SWIFT) get these too, but stipulate 

rel’nship between word properties & “processing rate” 
• We derive these relationships from simple principles of 

noisy-channel perception and rational action

98



Noisy-channel processing: summary
• Noisy-channel models help us understand 

• Basic capabilities of human language comprehension 
• Outstanding puzzles in syntactic processing 

• These models open up a rich typology of new sentence 
processing effects 

• There is growing evidence for these effects 
• These models pose new theoretical opportunities and 

architectural challenges for the study of human linguistic 
cognition
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