Noisy-channel sentence comprehension theory

Roger Levy
9.19: Computational Psycholinguistics

13 November 2023

Today's agenda

- Review principles of rational analysis and its application to theory of language comprehension
- Examine a phenomenon challenging for surprisal theory
- Propose a noisy-channel processing theory, using information theory and probabilistic grammars
- Develop a hypothesis within the theory for the challenging phenomenon
- Empirically test a key prediction of the theory

Challenges for efficient linguistic communication

Ambiguity

Memory Limitations
Incomplete knowledge of one's interlocutors

Rational analysis

- Background assumption: cognitive agent is optimized via evolution and learning to solve everyday tasks effectively

1. Specify precisely the goals of the cognitive system
2. Formalize model of the environment adapted to
3. Make minimal assumptions re: computational limitations
4. Derive predicted optimal behavior given $1 — 3$
5. Compare predictions with empirical data
6. If necessary, iterate 1-5

Efficient comprehension as rational, goal-driven

- Online sentence comprehension is hard
- But lots of information sources can be usefully brought to bear to help with the task
- Therefore, it would be rational for people to use all information sources available, whenever possible
- This is what incrementality is
- We have lots of evidence that people do this often
- How do we reconcile these information sources?

"Put the apple on the towel in the box." (Tanenhaus et al., 1995, Science)

Comprehenders as reverse engineers

Surprisal summary: psycholinguistic evidence

Problems addressed by a theory consisting of:

- Bayesian inference

$$
P(\mathrm{Str} \mid \mathrm{Input}) \propto P(\mathrm{Input} \mid \mathrm{Str}) P(\mathrm{Str})
$$

- Probabilistic grammar

yesterday
$P(T)=0.7 * 0.35 * 0.15 * 0.3 * 0.03 * 0.02 * 0.4 * 0.07$ $=1.85 \cdot 10^{-7}$
- Surprisal

$$
\operatorname{Surprisal}\left(w_{i}\right) \equiv \log \frac{1}{P\left(w_{i} \mid \text { CONTEXT }\right)}
$$

$$
\left[\approx \log \frac{1}{P\left(w_{i} \mid w_{1 \cdots i-1}\right)}\right]
$$

- Global disambiguation

- Garden-pathing

When the dog scratched the vet removed the muzzle.

- Prediction \& reading times
my brother came inside to...
the children went outside to...

Syntax-like surprisal from deep-learning models

(Elman, 1990; Hochreiter \& Schmidhuber, 1997)

(Vaswani et al., 2017; Radford et al., 2018, 2019)

(Futrell et al. 2019, NAACL)

(Wilcox et al., 2018, BlackBox NLP)

An incremental inference puzzle for surprisal

- Try to understand this sentence:
(a) The coach smiled at the player tossed the frisbee.
...and contrast this with:
(b) The coach smiled at the player thrown the frisbee.
(c) The coach smiled at the player who was thrown the frisbee.
(d) The coach smiled at the player who was tossed the frisbee.
- Readers boggle at "tossed" in (a), but not in (b-d)

Why is tossed/thrown interesting?

- As with classic garden-paths, part-of-speech ambiguity leads to misinterpretation
- The woman brought the sandwich...tripped
verb?
participle?

- But now context "should" rule out the garden path:
- The coach smiled at the player tossed...

- A challenge for rational models: failure to condition on relevant context

Uncertain input in language comprehension

- Previous state of the art models for ambiguity resolution \approx probabilistic incremental parsing
- Simplifying assumption:
- Input is clean and perfectly-formed
- No uncertainty about input is admitted
- Intuitively seems patently wrong...
- We sometimes misread things
- We can also proofread
- Leads to two questions:

1. What might a model of sentence comprehension under uncertain input look like?
2. What interesting consequences might such a model have?

Noisy-channel theory of language processing

(Shannon, 1948)

Noisy-channel sentence processing

- Standard probabilistic sentence processing:

$$
P_{G}(T \mid \mathbf{w}) \propto P(\mathbf{w} \mid T) P(T)=P(T, \mathbf{w})
$$

- If we don't observe a sentence but only a noisy input I :

$$
\begin{aligned}
& P_{G}(T \mid I) \propto \sum_{\mathbf{w}} P(I \mid T, \mathbf{w}) P(\mathbf{w} \mid T) P(T) \\
& P_{G}(\mathbf{w} \mid I) \propto \sum_{T} P(I \mid T, \mathbf{w}) P(\mathbf{w} \mid T) P(T)
\end{aligned}
$$

- If we know true sentence \mathbf{w}^{*} but not input l :

$$
P\left(\mathbf{w} \mid \mathbf{w}^{*}\right)=\int_{I} P_{C}\left(\mathbf{w} \mid I, \mathbf{w}^{*}\right) P_{T}\left(T \mid \mathbf{w}^{*}\right) d I
$$

comprehender's
model

$$
\propto Q\left(\mathbf{w}, \mathbf{w}^{*}\right) \quad \text { Levy (2008, EMNLP) }
$$

Representing noisy input

- How can we represent the type of noisy input generated by a word sequence?
- Probabilistic finite-state automata (pFSAs; Mohri, 1997) are a good model

- "Word 1 is a or b, and I have no info about Word 2"

Weighted finite-state automata

A WEIghted Finite-State automaton (WFSA) consists of a tuple (Q, V, S, R) such that:

- Q is a finite set of STATES $q_{0} q_{1} \ldots q_{N}$, with q_{0} the designated START STATE;
- Σ is a finite set of terminal symbols;
- $F \subseteq Q$ is the set of FINAL STATES;
- Δ is a finite set of TRANSITIONS each of the form $q \stackrel{i}{\rightsquigarrow} q^{\prime}$, meaning that "if you are in state q and see symbol i you can consume it and move to state $q^{\prime \prime \prime}$;
- λ is a function mapping transitions to real numbers (weights);
- ρ is a function mapping final states to real numbers (weights).

Weighted finite-state automata (2)

- Q is a finite set of states $q_{0} q_{1} \ldots q_{N}$, with q_{0} the designated start state;
- Σ is a finite set of terminal symbols;
- $F \subseteq Q$ is the set of final states;
- Δ is a finite set of transitions each of the form $q \stackrel{i}{\rightsquigarrow} q^{\prime}$, meaning that "if you are in state q and see symbol i you can consume it and move to state $q^{\prime \prime \prime}$;
- λ is a function mapping transitions to real numbers (weights);
- ρ is a function mapping final states to real numbers (weights).
- $w_{1 \ldots N} \in \Sigma^{N}$ is ACCEPTED or RECOGNIZED by an automaton iff there is a PATH of transitions $\underset{1 \ldots N}{\rightsquigarrow}$ to a final state $q^{*} \in F$ such that

$$
q_{0} \underset{1}{\stackrel{w_{1}}{\sim} \underset{\sim}{w_{2}}} \cdots \underset{N-1}{\sim} \underset{N}{w_{N-1}}{\underset{N}{N}}_{\sim}^{\sim} q^{*}
$$

- The WEIGHT of such a path \rightsquigarrow is the product of the weights of each of the transitions, together with the weight of the final state:

$$
\begin{equation*}
P\left(q_{0} \underset{1}{\stackrel{w_{1}}{w_{1}} \underset{2}{w_{2}}} \cdots \xrightarrow[N-1]{\sim}{\underset{N}{N}}_{\sim}^{\sim}{\underset{N}{N}}^{w_{N}} q^{*}\right)=\rho\left(q^{*}\right) \prod_{i=1}^{N} \lambda(\underset{i}{\rightsquigarrow}) \tag{1}
\end{equation*}
$$

Probabilistic Linguistic Knowledge

- A generative probabilistic grammar determines beliefs about which strings are likely to be seen
- Probabilistic Context-Free Grammars (PCFGs; Booth, 1969)
- Probabilistic Minimalist Grammars (Hale, 2006)
- Probabilistic Finite-State Grammars (Mohri, 1997; Crocker \& Brants 2000)

Input symbol

Log-probability (surprisal)

- In position 1, -a,b,c,d\} equally likely; but in position 2 :
- -a,b\} are usually followed by e, occasionally by f
- -c,d\} are usually followed by f, occasionally by e

Combining grammar \& uncertain input

- Bayes' Rule says that the evidence and the prior should be combined (multiplied)
- For probabilistic grammars, this combination is the formal operation of weighted intersection

Revising beliefs about the past

- When we're uncertain about the future, grammar + partial input can affect beliefs about what will happen
- With uncertainty of the past, grammar + future input can affect beliefs about what has already happened
words $1+2$

$$
-\mathrm{b}, \mathrm{c}\}-\mathbf{f}, \mathrm{f}\}
$$

-b,c\} -?\}
word 1

The noisy-channel model (FINAL)

$$
P\left(\mathbf{w} \mid \mathbf{w}^{*}\right) \propto \underbrace{P_{C}(\mathbf{w})}_{\text {Prior }} \underbrace{Q\left(\mathbf{w}, \mathbf{w}^{*}\right)}_{\text {Expected evidence }}
$$

- For $Q\left(\mathbf{w}, \mathbf{w}^{*}\right)$: a WFSA based on Levenshtein distance between words ($K_{L D}$):

Cost(a cat sat)=0

Cost(sat a sat cat)=8 Result of $K_{L D}$ applied to $\mathbf{w}^{*}=$ a cat sat

Rational analysis

- Background assumption: cognitive agent is optimized via evolution and learning to solve everyday tasks effectively

1. Specify precisely the goals of the cognitive system
2. Formalize model of the environment adapted to
3. Make minimal assumptions re: computational limitations
4. Derive predicted optimal behavior given $1 — 3$
5. Compare predictions with empirical data
6. If necessary, iterate 1-5

Incremental inference under uncertain input

- Near-neighbors make the "incorrect" analysis "correct":

The coach smiled at the player tossed the frisbee

- Hypothesis: the boggle at "tossed" involves what the comprehender wonders whether she might have seen

Rational analysis

- Background assumption: cognitive agent is optimized via evolution and learning to solve everyday tasks effectively

1. Specify precisely the goals of the cognitive system
2. Formalize model of the environment adapted to
3. Make minimal assumptions re: computational limitations
4. Derive predicted optimal behavior given $1 — 3$
5. Compare predictions with empirical data
6. If necessary, iterate 1-5

The core of the intuition

- Grammar \& input come together to determine two possible "paths" through the partial sentence:
the coach smiled...

$$
\begin{aligned}
& \text { as/and } \\
& \text { (unlikely) }
\end{aligned}
$$

torsesiad

...the player...

- tossed is more likely to happen along the bottom path
- This creates a large shift in belief in the tossed condition
- thrown is very unlikely to happen along the bottom path
- As a result, there is no corresponding shift in belief

Ingredients for the model

$$
P\left(\mathbf{w} \mid \mathbf{w}^{*}\right) \propto \underbrace{P_{C}(\mathbf{w})}_{\text {Prior }} \underbrace{Q\left(\mathbf{w}, \mathbf{w}^{*}\right)}_{\text {Expected evidence }}
$$

- $\mathrm{Q}\left(\mathbf{w}, \mathbf{w}^{*}\right)$ comes from $K_{L D}$ (with minor changes)
- $P_{C}(\mathbf{w})$ comes from a probabilistic grammar (this time finite-state)
- We need one more ingredient:
- a quantified signal of the alarm induced by word w_{i} about changes in beliefs about the past

Quantifying alarm about the past

- Relative Entropy (KL-divergence) is a natural metric of change in a probability distrib. (Levy, 2008; Itti \& Baldi, 2005)

$$
D(P \| Q)=\sum_{x} P(x) \log \frac{P(x)}{Q(x)}
$$

- Our distribution of interest is probabilities over the previous words in the sentence
- Call this distribution $P_{i}\left(w_{[0, j)}\right)$ conditions on words 0 through i
- The change induced by w_{i} is the error identification signal E / S_{j}, defined as

$$
D\left(\frac{P_{i}\left(w_{[0, i)}\right)}{P_{\text {new distribution }}} \frac{\| P_{i-1}\left(w_{[0, i)}\right)}{\text { old distribution }}\right)
$$

Results on local-coherence sentences

- Locally coherent: The coach smiled at the player tossed the frisbee
- Locally incoherent: The coach smiled at the player thrown the frisbee

Today's summary

- Reviewed principles of rational analysis and its application to theory of language comprehension
- Examined a phenomenon challenging for surprisal theory
- Proposed a noisy-channel processing theory, using information theory and probabilistic grammars
- Developed a hypothesis within the theory for the challenging phenomenon

References

Anderson, J. R. (1991). The adaptive nature of human categorization. Psychological Review, 98(3), 409.
Anderson, J. R. (1990). The adaptive character of human thought. Hillsdale, NJ: Lawrence Erlbaum.
Elman, J. (1990). Finding structure in time. Cognitive Science, 14, 179-211.
Futrell, R., Wilcox, E., Morita, T., Qian, P., Ballesteros, M., \& Levy, R. (2019). Neural language models as psycholinguistic subjects: Representations of syntactic state. In Proceedings of the 18th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 32-42).
Gibson, E., Bergen, L., \& Piantadosi, S. T. (2013). Rational integration of noisy evidence and prior semantic expectations in sentence interpretation. Proceedings of the National Academy of Sciences, 110(20), 8051-8056.

Hochreiter, S., \& Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
Levy, R. (2008). A noisy-channel model of rational human sentence comprehension under uncertain input. In Proceedings of the 13th conference on Empirical Methods in Natural Language Processing (pp. 234-243). Waikiki, Honolulu.
Levy, R., Bicknell, K., Slattery, T., \& Rayner, K. (2009). Eye movement evidence that readers maintain and act on uncertainty about past linguistic input. Proceedings of the National Academy of Sciences, 106(50), 21086-21090.

Radford, A., Narasimhan, K., Salimans, T., \& Sutskever, I. (2018). Improving language understanding by generative pretraining.
Shannon, C. (1948). A mathematical theory of communication. Bell Systems Technical Journal, 27(4), 623-656.
Tabor, W., Galantucci, B., \& Richardson, D. (2004). Effects of merely local syntactic coherence on sentence processing. Journal of Memory and Language, 50(4), 355-370.
Tanenhaus, M. K., Spivey-Knowlton, M. J., Eberhard, K., \& Sedivy, J. C. (1995). Integration of visual and linguistic information in spoken language comprehension. Science, 268, 1632-1634.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., \& Polosukhin, I. (2017). Attention is all you need. In Proceedings of Neural Information Processing Systems (pp. 5998-6008).
Wilcox, E., Levy, R. P., Morita, T., \& Futrell, R. (2018). What do RNN language models learn about filler-gap dependencies? In Proceedings of the workshop on analyzing and interpreting neural networks for NLP.

Prediction 2: hallucinated garden paths

- Try reading the sentence below:

While the clouds crackled, above the glider soared a magnificent eagle.

- There's a garden-path clause in this sentence...
- ...but it's interrupted by a comma.
- Readers are ordinarily very good at using commas to guide syntactic analysis:

While the man hunted, the deer ran into the woods
While Mary was mending the sock fell off her lap

- "With a comma after mending there would be no syntactic garden path left to be studied." (Fodor, 2002)
- We'll see that the story is slightly more complicated.

Prediction 2: hallucinated garden paths

While the clouds crackled, above the glider soared a magnificent eagle.

- This sentence is comprised of an initial intransitive subordinate clause...
- ...and then a main clause with locative inversion.
(c.f. a magnificent eagle soared above the glider)
- Crucially, the main clause's initial PP would make a great dependent of the subordinate verb...
- ...but doing that would require the comma to be ignored.
- Inferences through ...glider should thus involve a tradeoff between perceptual input and prior expectations

- Inferences as probabilistic paths through the sentence:
- Perceptual cost of ignoring the comma
- Unlikeliness of main-clause continuation after comma
- Likeliness of postverbal continuation without comma
- These inferences together make soared very surprising!

$$
P\left(w_{i} \mid \text { Context }\right)=\sum_{\text {Path }} P\left(w_{i} \mid \text { Path }, \text { Context }\right) P(\text { Path } \mid \text { Context })
$$

Prediction 2: hallucinated garden paths

- Two properties come together to create "hallucinated garden path"

1. Subordinate clause into which the main-clause inverted phrase would fit well
2. Main clause with locative inversion

- Experimental design: cross (1) and (2)

While the clouds crackled, above the glider soared a magnificent eagle. While the clouds crackled, the glider soared above a magnificent eagle. While the clouds crackled in the distance, above the glider soared a magnificent eagle.
While the clouds crackled in the distance, the glider soared above a magnificent eagle.

- The phrase in the distance fulfills a similar thematic role as above the glider for crackled
- Should reduce hallucinated garden-path effect

Prediction 2: Hallucinated garden paths

- Methodology: word-by-word self-paced reading

- Readers aren't allowed to backtrack
- So the comma is visually gone by the time the inverted main clause appears
- Simple test of whether beliefs about previous input can be revised

Model predictions

While the clouds crackled, above the glider soared a magnificent eagle.

While the clouds crackled in the distance, above the glider soared a magnificent eagle.

While the clouds
crackled, the glider soared above a magnificent eagle.

While the clouds crackled in the distance, the glider soared above a magnificent eagle.

Results: whole sentence reading times

Processing boggle occurs exactly where predicted

Hallucinated garden-path summary

- The at/toward study showed that comprehenders note the possibility of alternative strings and act on it
- This study showed that comprehenders can actually devote resources to grammatical analyses inconsistent with the surface string

Hallucinated garden paths cont'd

- Sure, but punctuation's weird stuff
- What about real words?

I know that the desert trains could resupply the camp.

- At least sometimes, bias against N N interpretation

Hallucinated GPs with words

- We use a contextual bias against NN and toward NV to test for GP hallucinations involving wordform change

Could be "intern chauffeured"

The intern chauffeur for the governor hoped for more interesting work. [NN, "dense" neighborhood]

The intern chauffeured for the governor but hoped for more interesting work. [NV , "dense" neighborhood]

Could NOT be "inexperienced chauffeured"
The inexperienced chauffeur for the governor hoped for more interesting work. [NN, "sparse" neighborhood]

Some interns chauffeured for the governor but hoped for more interesting work. [NV, "sparse" neighborhood]

Results

- RT spike at disambiguating region for NN Dense

(Bergen, Levy, \& Gibson, 2012)

Noisy-channel theory of language processing

Simple question-answering

The woman lost the diamond.
Did the woman lose something?

The ball kicked the girl.
Did the girl kick something?

The businessman benefited from the tax law.
Did the tax law benefit from anything?

The cook baked a cake Lucy.
Was something baked for Lucy?

Noisy-channel semantic interpretation?

 $I \leftarrow$ The cook baked a cake Lucy. m ? Was something baked for Lucy?Information

In two semantically plausible "neighbor" sentences, the answer is "yes":

The cook baked a cake Lucy.
Hypothesized noise operation: deletion for

The cook baked a cake Lucy. Hypothesized noise operation: exchange Lucy a cake

Predictions for implausible sentences

$P(m \mid I) \propto P(I \mid m) P(m)$

Noise operation Plausibility Non-literal interpretation?

Double Object/Benefactive-for alternation

	The cook baked a cake Lucy. The cook baked Lucy for a cak
	The cook baked a cake

Active/Passive alternation
Implausible [The ball kicked the girl.
The girl was kicked by the ball.
Plausible $\left[\begin{array}{l}\text { The girl kicked the ball. } \\ \text { The ball was kicked by the girl. }\end{array}\right.$
Deletion/ Exchange
insertion

Yes	Yes
Yes	Yes
No	No
No	No

No Yes
No Yes
No Yes
No Yes

Literal vs. non-literal interpretation rates

Non-literal interpretations for implausible sentences?

Five alternations in an insertion/deletion model

English constructions	Change	Implausible version
1. Active/passive	Two insertions Two deletions One deletion, one insertion One insertion, one deletion	c. The girl was kicked by the ball. (passive) d. The ball kicked the girl. (active) c. The table jumped onto a cat. (object-locative)
2. Subject-locative/		
object-locative	One the cat jumped a table. (subject-locative)	

Five alternations in an insertion/deletion model

$P(m \mid I) \propto \underset{\substack{\text { Noise } \\ \text { operation }}}{\nearrow} \underset{\text { Plausibility }}{\sim}$	Passive / Active (Ic) / (Id)	$\begin{aligned} & \text { Obj-Loc / Subj-Loc } \\ & \text { (2c) / (2d) } \end{aligned}$	Intrans / Trans (3c) / (3d)	$\begin{aligned} & \text { PO-goal / DO-goal } \\ & (4 \mathrm{c}) /(4 \mathrm{~d}) \end{aligned}$	$\begin{aligned} & \text { PO-ben / DO-ben } \\ & \text { (5c) / (5d) } \end{aligned}$
Base experiment 20 experimental items, 60 plausible \& grammatically normal fillers \rightarrow 10/80 implausible trials					$\begin{gathered} 00 \\ 00 \\ 00 \\ 00 \\ 00 \\ 08 \\ 00 \\ 00 \\ 02 \\ 00 \\ 0 \\ 0 \end{gathered}$

Fillers with syntactic errors

"A legislator lied to the consultant a new bill"
"A bystander was the fireman by rescued in the nick of time"

Many implausible trials
100 experimental items, 60 plausible \& grammatically normal fillers \rightarrow 50/160 implausible trials

Inferring deletions versus insertions

$$
P(m \mid I) \propto \underset{\text { Noise operation }}{P(I \mid m)} \frac{P(m)}{\text { Plausibility }}
$$

The cook baked a cake Lucy.

The cook baked Lucy a cake.
Choose what to insert

The cook baked Lucy for a cake.
Noisy-channel prediction: inferring deletions should be intrinsically easier than inferring insertions!

Five alternations in an insertion/deletion model

$\underset{(c\|l\|) \propto P(I \mid m)^{P(m)}}{\uparrow}$					
					\%
Fillers with yntactic errors "A legislator lied to the "A bystander was the the nick of time"			\square		1.

(Gibson et al., 2013)

In the real world (2008)

Sarah Palin (images credit Gage Skidmore)
(i)() CC BY-SA

Corpora of speech errors

John dropped his cuff of coffee
Anticipations

Perseverations
John gave the goy (=gave the boy)
Spanish speaping people
teep a cape (=keep a tape)
Exchanges
the nipper is zarrow
Fancy getting your model renosed (=nose remodeled)

Revisiting the possibility of exchanges

This is a problem that I need to talk about Joe with.

- An occasional speech error of mine that l've noticed for years, but that no one ever notices me make
- Extraordinarily unlikely under an insertions/deletions noise model
- But reasonably likely if word exchanges are admitted

The package fell from the table to the floor. [plausible; canonical] The package fell to the floor from the table. [plausible; non-canonical] The package fell from the floor to the table. [implausible; canonical] The package fell to the table from the floor. [implausible; non-canonical]

Did something fall to the floor?
(Poppels \& Levy 2016)

Exchanges in the noise model

(Poppels \& Levy 2016)

Probing inferred intended utterances

Information

Experiment "cover story": read transcriptions of speech that might have errors, retype with edits if they think the speaker might have meant something else The ball kicked the girl. The judge gave the athlete to the prize.

The ball kicked the girl. The judge gave the athlete the prize.
No error
The girl kicked the ball. Exchange
$P(u \mid I) \propto P(I \mid u) P(u)$

The ball was kicked by the girl. The judge gave the prize to the athlete. Deletion

Exchange
(Ryskin et al., 2018)

Probing inferred intended utterances

(Ryskin et al., 2018)
"The actor handed the director to the script."

Response type
"The bowl broke the grandfather."

exchange
\pm
I

Noisy-channel interpretation summary

- The noisy-channel framework suggests investigating global interpretations as well as incremental processing
- "Non-literal" interpretations can be very frequent for the right stimuli
- Interpretations broadly follow Bayesian principle of tradeoff between prior and likelihood
- Deletions easier to infer than insertions
- Higher grammatical error rate in environment \rightarrow more nonliteral inference
- More implausible sentences in environment \rightarrow less nonliteral inference
- However, status of exchange errors in the noise model remains a mystery

Structural Forgetting and the Noisy Channel

1. The apartment that the maid who the cleaning service sent over was well-decorated.
2. The apartment that the maid who the cleaning service sent over cleaned was well-decorated.

Structural Forgetting

1. *The apartment that the maid who the cleaning service sent over was well-decorated.
2. The apartment that the maid who the cleaning service sent over cleaned was well-decorated. ${ }^{\circ}$

Structural Forgetting

1. *The apartment that the maid who the cleaning service sent over was well-decorated.
2. The apartment that the maid who the cleaning service sent over cleaned was well-decorated. 准

- Structural forgetting effect: part of the sentence is forgotten by the time you get to the end (Gibson \& Thomas, 1999; Frazier, 1985; Fodor, p.c.)
- The ungrammatical sentence seems better than the grammatical one.
- A "grammaticality illusion": how could we define grammaticality in this case?

Gibson \& Thomas 1999: whole-sentence reading
The ancient manuscript that the graduate student who the new card catalog had confused a great deal was studying in the library was missing a page.

Christiansen \& MacDonald 2009: word-by-word self-paced reading, follows by rating
The chef who the waiter who the busboy offended appreciated admired the musicians.

Structural Forgetting

1. *TDine Hpohrmang dhatdlseZinaidewhoäthehnelaadasageervice

2. Dine Mpehrmag, dhatdtseZinaid evhoäthehchasadangleervice

- But the effect is language-dependent (Vasishth et al., 2010; Frank et al., 2016).
- In German (and Dutch), people prefer 2 over 1.
- What is the difference between English and German?
- Frank et al. (2016) show that at recurrent neural network gives higher probability to (1) in English, but (2) in German.
- But why?

Structural Forgetting

1. *The apartment that the maid who the cleaning service sent over was well-decorated.
2. The apartment that the maid who the cleaning service sent over cleaned was well-decorated.

- These contexts are more common in German than English (Roland et al., 2007).
- English: the maid [that cleaned the apartment] $\mathbf{8 0 \%}$ the apartment [that the maid cleaned]
- German: das Dienstmädchen, [das die Wohnung reinigte] die Wohnung, [die das Dienstmädchen reinigte]

Noisy-Context Surprisal Account of Structural Forgetting

- Structural forgetting means the ungrammatical sentence with two verbs is easier to process than the grammatical sentence with three verbs:

C(The apartment that the maid who the cleaning service NOUN THAT NOUN THAT NOUM VERB VERB) < sent over

(The apartment that the maid who the cleaning service
sent over cleaned was well-decorated.)

Noisy-Context Surprisal Account of Structural Forgetting

$$
C(2 \text { VERBS })<C(3 \text { VERBS })
$$

noisy context
key word
woun tehativenoumbuwhmantnouw verb veerb

- Correct noise based on prior about the language.
- Higher probability for verb-final RCs in German,
- so more likely to make the right prediction.

Noisy-Context Surprisal Account of Structural Forgetting

- Futrell \& Levy (2017) demonstrate that this works for toy grammars of English and German.

Rule	Probability					
S -> NP VERb	1	NOUN	VERB			
NP -> noun	1-m	NOUN	PREP	NOUN	VERB	
NP -> noun RC	mr	NOUN	THAT	VERB	NOUN	VERB
NP -> noun PP	$m(1-r)$	noun	THAT	NOUN	VERb	VERB
PP -> PREp NP	1	NOUN	THAT	noun	THAT	NOUN...
RC -> that verb NP	s					
RC -> that NP verb	1-s					

Plus deletion noise: every token in the context is forgotten (deleted) with probability d

Noisy-Context Surprisal Account of Structural Forgetting

- Setting the verb-final RC rate to 100% for German and 20\% for English (Roland et al., 2007),
- we find surprisal differences matchins the forgetting effect:

Noisy-Context Surprisal Account of Structural Forgetting

Vasishth et al. (2010)

Robustness to choice of model parameters

m Modifier probability
s Probability of English RC being verb-final
d Probability of context token deletion
= English+German-like pattern

Noisy-Context Surprisal Account of Structural Forgetting

- Probability that a context is remembered depends on its prior probability.
- Noisy-context surprisal explains the behavior of the RNN in Frank et al. (2016): the RNN is using a lossily compressed / noisy representation of context.
- The model has an explicit grammar (competence), but cannot apply it correctly (performance).

Structural Forgetting and the Noisy Channel

1. The apartment that the maid who the cleaning service sent over was well-decorated.
2. The apartment that the maid who the cleaning service sent over cleaned was well-decorated.

Structural Forgetting

1. *The apartment that the maid who the cleaning service sent over was well-decorated.
2. The apartment that the maid who the cleaning service sent over cleaned was well-decorated. ${ }^{\circ}$

Structural Forgetting

1. *The apartment that the maid who the cleaning service sent over was well-decorated.
2. The apartment that the maid who the cleaning service sent over cleaned was well-decorated. 准

- Structural forgetting effect: part of the sentence is forgotten by the time you get to the end (Gibson \& Thomas, 1999; Frazier, 1985; Fodor, p.c.)
- The ungrammatical sentence seems better than the grammatical one.
- A "grammaticality illusion": how could we define grammaticality in this case?

Structural Forgetting

1. *TDine Hpohrmang dhatdlseZinaidewhoäthehnelaadasageervice Perinogungsdsewsiliideroantlde, Car gut eingerichtet. 浸
2. Dine Mpehrmag, dhatdtseZinaid evhoäthehchasadangleervice

Periniogungddianest uilasnwathle,corinfigde, 首ar gut eingerichtet.

- But the effect is language-dependent (Vasishth et al., 2010; Frank et al., 2016).
- In German (and Dutch), people prefer 2 over 1.
- What is the difference between English and German?
- Frank et al. (2016) show that at recurrent neural network gives higher probability to (1) in English, but (2) in German.
- But why?

Structural Forgetting

1. *The apartment that the maid who the cleaning service sent over was well-decorated.
2. The apartment that the maid who the cleaning service sent over cleaned was well-decorated.

- These contexts are more common in German than English (Roland et al., 2007).
- English: the maid [that cleaned the apartment] $\mathbf{8 0 \%}$ the apartment [that the maid cleaned]
- German: das Dienstmädchen, [das die Wohnung reinigte] die Wohnung, [die das Dienstmädchen reinigte]

Noisy-Context Surprisal Account of Structural Forgetting

- Structural forgetting means the ungrammatical sentence with two verbs is easier to process than the grammatical sentence with three verbs:
C The apartment that the maid who the cleaning service NOUN THAT NOUN THAT NOUM VERB VERB) < sent over

C(The apartment that the maid who the cleaning service sent over cleaned was well-decorated.)

Noisy-Context Surprisal Account of Structural Forgetting

$$
C(2 \text { VERBS })<C(3 \text { VERBS })
$$

noisy context
key word
woun triativenoumbuwhtiatnoum verb veerr

- Correct noise based on prior about the language.
- Higher probability for verb-final RCs in German,
- so more likely to make the right prediction.

Noisy-Context Surprisal Account of Structural Forgetting

- We demonstrate that this works for toy grammars of English and German.

Rule	Probability
S -> NP verb	1
NP -> noun	1-m
NP -> noun RC	$m r$
NP -> noun PP	$m(1-r)$
PP -> Prep NP	1
RC -> that verb NP	s
RC-> that NP verb	1-s

NOUN VERB
NOUN PREP NOUN VERB
NOUN THAT VERB NOUN VERB
NOUN THAT NOUN VERB VERB
NOUN THAT NOUN THAT NOUN...

Noisy-Context Surprisal Account of Structural Forgetting

- Setting the verb-final RC rate to 100% for German and 20\% for English (Roland et al., 2007),
- we find surprisal differences matchins the forgetting effect:

Noisy-Context Surprisal Account of Structural Forgetting

Noisy-Context Surprisal Account of Structural Forgetting

- Probability that a context is remembered depends on its prior probability.
- Noisy-context surprisal explains the behavior of the RNN in Frank et al. (2016): the RNN is using a lossily compressed / noisy representation of context.
- The model has an explicit grammar (competence), but cannot apply it correctly (performance).

Dependency length and noisy-channel surprisal

- Syntactic dependencies vary in linear distance

- Idea with long history: short dependencies preferred

Dependency lengths are short across languages!

Sentence length

Dependency lengths and the noisy channel

- Here: dependency length minimization can be derived from a combination of surprisal \& noisy-channel theory

Richard Futrell

From noisy-channel \& surprisal to dependency length minimization

noisy context

- Suppose we have an increasing noise rate the longer a word has been in memory.
- When "threw" is far from "out", then it is less likely to reduce the surprisal of "out": more likely to be affected by noise.
- Noisy-context surprisal increases when words that predict each other are far apart.
- We call this information locality (following Gildea \& Jaeger, 2015).

Derivation of Information Locality

- Erasure noise decreases the influence of context:

$$
C(w \mid \text { context }) \approx h(w)-\sum_{w^{\prime} \in \text { context }} P\left(w^{\prime} \text { not erased }\right) \operatorname{pmi}\left(w ; w^{\prime}\right)
$$

John threw the trash out
h (out) - $P($ John not erased) $\operatorname{pmi}($ John; out $)$

- P (threw not erased) pmi(threw; out)
- P(the not erased) pmi(the; out)
- P(trash not erased) pmi(trash; out)

Derivation of Information Locality

- Noise decreases the influence of context:

$$
C(w \mid \text { context }) \approx h(w)-\sum_{w^{\prime} \in \mathrm{context}} P\left(w^{\prime} \text { not erased }\right) \operatorname{pmi}\left(w ; w^{\prime}\right)
$$

$h($ out $)-P($ threw not erased) pmi(threw; out)

000011010101011001011010000111001111011100 010101011110101100101000000010101110010011 001001101010110011000101010010011010100110 100100100001001010011011110010010010001000 011000111100111100010011110010010111010010 11000010000110011000010101010011111111100 110100110011011100000001011000111001111010 010100010011111101101111100101001011000001 100111100100001011110001000110000111010001 001111010100111101110010100011100100100101 101011001000101110101000011110011101101101

[^0]
Derivation of Information Locality

- Noise decreases the influence of context:

$$
C(w \mid \text { context }) \approx h(w)-\sum_{w^{\prime} \in \text { context }} P\left(w^{\prime} \text { not erased }\right) \operatorname{pmi}\left(w ; w^{\prime}\right)
$$

$$
h(\text { out }) ~-P(\text { threw not erased) pmi(threw; out) }
$$

- When context items are far, their cost-reducing influence decreases.
- Similar to the concept of decay in cue effectiveness

000011010101011001011010000111001111011100 010101011110101100101000000010101110010011 001001101010110011000101010010011010100110 100100100001001010011011110010010010001000 011000111100111100010011110010010111010010 11000010000110011000010101010011111111100 110100110011011100000001011000111001111010 010100010011111101101111100101001011000001 100111100100001011110001000110000111010001 001111010100111101110010100011100100100101 101011001000101110101000011110011101101101 110101000001100010011000101000100100101000 001101100100001001001010100010100110000011 001001101001111011110100110100011010111000 100001010101000101101001111010110101100111 01101010000110000011000100000111111111001 110101000011101001101110000111000111001011 001110111100011101011110011011111100001110 011110011001100111010101100101111001100000 011110010101111001101000110000000000111110 110000100100111110110101001101011110001100 001111010101011011111110111100110010010111

[^1](Qian \& Jaeger, 2012)

Information Locality

- Information locality: prediction of processing difficulty when words that predict each other (have high mutual information) are far apart.
- How does this relate to dependency locality?
- Hypothesis: Words in syntactic dependencies have high mutual information.
- If this is true, then we can see dependency locality effects as a subset of information locality effects.
- We will show that the hypothesis is true in dependency corpora.

Do Dependencies Have High Mutual Information?

- We calculated mutual information values over part-of-speech tags for pairs of words in the UD corpora.

Do Dependencies Have High Mutual Information?

(Futrell \& Levy, 2017)

Comprehension as exploration of input

- Broader ongoing goal: develop eye-movement control model integrating the insights discussed thus far:
- Probabilistic linguistic knowledge
- Uncertain input representations
- Principles of adaptive, rational action
- Reinforcement learning is an attractive tool for this

A rational reader

- Very simple framework:
- Start w/ prior expectations for text (linguistic knowledge)
- Move eyes to get perceptual input
- Update beliefs about text as visual arrives (Bayes' Rule)
- Add to that:
- Set of actions the reader can take in discrete time
- A behavior policy: how the model decides between actions

A first-cut behavior policy

- Actions: keep fixating; move the eyes; or stop reading
- Simple behavior policy with two parameters: α and β
- Define confidence in a character position as the probability of the most likely character
From the closet, she pulled out a *acket for the upcoming game

```
P(jacket)=0.38
P(racket)=0.59
P(packet)=0.02
```

- Move left to right, bringing up confidence in each character position until it reaches α
- If confidence in a previous character position drops below β, regress to it
- Finish reading when you're confident in everything

(Non)-regressive policies

- Non-regressive policies have $\beta=0$
- Hypothesis: non-regressive policies strictly dominated
- Test: estimate speed and accuracy of various policies on reading the the Schilling et al. (1998) corpus

Non-regressive policies always beaten by some regressive policy

Goal-based adaptation

- Open frontier: modeling the adaptation of eye movements to specific reader goals
- We set a reward function: relative value γ of speed (finish reading in T timesteps) versus accuracy (guess correct sentence with probability L)
- PEGASUS simplex-based optimization (Ng \& Jordan, 2000)

$\boldsymbol{\gamma} \quad \boldsymbol{\alpha} \quad \boldsymbol{\beta}$		
0.025		
0.1		
0.4		

- The method works, and gives intuitive results

Empirical match with human reading

- Benchmark measures in eye-movement modeling:
frequency

predicts size and
shape of all effects

predictability

Success at empirical benchmarks

- Other models (E-Z Reader, SWIFT) get these too, but stipulate rel'nship between word properties \& "processing rate"
- We derive these relationships from simple principles of noisy-channel perception and rational action

Noisy-channel processing: summary

- Noisy-channel models help us understand
- Basic capabilities of human language comprehension
- Outstanding puzzles in syntactic processing
- These models open up a rich typology of new sentence processing effects
- There is growing evidence for these effects
- These models pose new theoretical opportunities and architectural challenges for the study of human linguistic cognition

References I

Bergen, L., Levy, R., \& Gibson, E. (2012). Verb omission errors: Evidence of rational processing of noisy language inputs.
In Proceedings of the 34th annual meeting of the Cognitive Science Society (pp. 1320-1325).
囯 Bever, T. (1970). The cognitive basis for linguistic structures. In
J. Hayes (Ed.), Cognition and the development of language (pp. 279-362). New York: John Wiley \& Sons.

- Bicknell, K., \& Levy, R. (2010). A rational model of eye
movement control in reading. In Proceedings of the 48th
annual meeting of the Association for Computational
Linguistics (pp. 1168-1178). Uppsala, Sweden.
围 Bicknell, K., \& Levy, R. (2012a). Why long words take longer to
read: The role of uncertainty about word length. In
Proceedings of the 3rd annual workshop on Cognitive
Modeling and Computational Linguistics (pp. 21-30).

References II

R Bicknell, K., \& Levy, R. (2012b). Word predictability and frequency effects in a rational model of reading. In Proceedings of the 34th annual meeting of the Cognitive Science Society (pp. 126-131). Sapporo, Japan.
E- Booth, T. L. (1969). Probabilistic representation of formal languages. In IEEE conference record of the 1969 tenth annual symposium on switching and automata theory (pp. 74-81).
Crocker, M., \& Brants, T. (2000). Wide-coverage probabilistic sentence processing. Journal of Psycholinguistic Research, 29(6), 647-669.
E Fodor, J. D. (2002). Psycholinguistics cannot escape prosody. In Proceedings of the speech prosody conference.

References IV

围 Futrell，R．，\＆Levy，R．（2017）．Noisy－context surprisal as a human sentence processing cost model．In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics（EACL） （pp．688－698）．
围 Futrell，R．，Mahowald，K．，\＆Gibson，E．（2015）．Large－scale evidence of dependency length minimization in 37 languages．Proceedings of the National Academy of Sciences，112（33），10336－10341．
囯 Gibson，E．（1998）．Linguistic complexity：Locality of syntactic dependencies．Cognition，68，1－76．
围 Gibson，E．（2000）．The dependency locality theory：A distance－based theory of linguistic complexity．In A．Marantz，Y．Miyashita，\＆W．O’Neil（Eds．），Image， language，brain（pp．95－126）．Cambridge，MA：MIT Press．

References V

Gibson, E., Bergen, L., \& Piantadosi, S. T. (2013). Rational integration of noisy evidence and prior semantic expectations in sentence interpretation. Proceedings of the National Academy of Sciences, 110(20), 8051-8056.
囲 Gibson, E., \& Thomas, J. (1999). The perception of complex ungrammatical sentences as grammatical. Language \& Cognitive Processes, 14(3), 225-248.
© Gildea, D., \& Jaeger, T. F. (2015). Human languages order information efficiently. CoRR, abs/1510.02823. arXiv: 1510.02823

囯 Gildea, D., \& Temperley, D. (2007). Optimizing grammars for minimum dependency length. In Proceedings of the annual meeting of the association for computational linguistics, Prague, Czech Republic.

- Gildea, D., \& Temperley, D. (2010). Do grammars minimize dependency length? Cognitive Science, 34, 286-310.

References VI

屢 Hale，J．（2001）．A probabilistic Earley parser as a psycholinguistic model．In Proceedings of the second meeting of the north american chapter of the Association for Computational Linguistics（pp．159－166）．Pittsburgh， Pennsylvania．
圊 Hale，J．（2006）．Uncertainty about the rest of the sentence．
Cognitive Science，30（4），609－642．
國 Hawkins，J．A．（2004）．Efficiency and complexity in grammars． Oxford University Press．
圊 Itti，L．，\＆Baldi，P．（2005）．Bayesian surprise attracts human attention．In Advances in Neural Information Processing Systems．
囯 Jelinek，F．，\＆Lafferty，J．D．（1991）．Computation of the probability of initial substring generation by stochastic context free grammars．Computational Linguistics，17（3）， 315－323．

References VII

- Johnson, M. (1998). PCFG models of linguistic tree representations. Computational Linguistics, 24(4), 613-632.
Klein, D., \& Manning, C. D. (2003). Accurate unlexicalized parsing. In Proceedings of acl.
目 Levy, R. (2008a). A noisy-channel model of rational human sentence comprehension under uncertain input. In Proceedings of the 13th conference on Empirical Methods in Natural Language Processing (pp. 234-243). Waikiki, Honolulu.
囯 Levy, R. (2008b). Expectation-based syntactic comprehension.
Cognition, 106(3), 1126-1177.

References VIII

寈 Levy，R．（2011）．Integrating surprisal and uncertain－input models in online sentence comprehension：Formal techniques and empirical results．In Proceedings of the 49th annual meeting of the Association for Computational Linguistics：Human Language Technologies （pp．1055－1065）．
回 Levy，R．（2013）．Memory and surprisal in human sentence comprehension．In R．P．G．van Gompel（Ed．），Sentence processing（pp．78－114）．Hove：Psychology Press．
㐭 Levy，R．，Bicknell，K．，Slattery，T．，\＆Rayner，K．（2009）．Eye movement evidence that readers maintain and act on uncertainty about past linguistic input．Proceedings of the National Academy of Sciences，106（50），21086－21090．
E MacDonald，M．C．（1993）．The interaction of lexical and syntactic ambiguity．Journal of Memory and Language， 32，692－715．

References IX

目 Mohri，M．（1997）．Finite－state transducers in language and speech processing．Computational Linguistics，23（2）， 269－311．
围 Park，Y．A．，\＆Levy，R．（2009）．Minimal－length linearizations for mildly context－sensitive dependency trees．In
Proceedings of the 10th annual meeting of the North American chapter of the Association for Computational Linguistics：Human Language Technologies（NAACL－HLT） conference（pp．335－343）．Boulder，Colorado，USA．
囯 Poppels，T．，\＆Levy，R．（2016）．Structure－sensitive noise inference：Comprehenders expect exchange errors．In Proceedings of the 38th annual meeting of the Cognitive Science Society（pp．378－383）．
R Roland，D．，Dick，F．，\＆Elman，J．L．（2007）．Frequency of basic English grammatical structures：A corpus analysis． Journal of Memory and Language，57，348－379．

References X

图 Smith，N．J．，\＆Levy，R．（2013）．The effect of word predictability on reading time is logarithmic．Cognition，128（3）， 302－319．
图 Staub，A．（2007）．The parser doesn＇t ignore intransitivity，after all．Journal of Experimental Psychology：Learning， Memory，\＆Cognition，33（3），550－569．
（istolcke，A．（1995）．An efficient probabilistic context－free parsing algorithm that computes prefix probabilities．
Computational Linguistics，21（2），165－201．
图 Tabor，W．，Galantucci，B．，\＆Richardson，D．（2004）．Effects of merely local syntactic coherence on sentence processing． Journal of Memory and Language，50（4），355－370．
：Tanenhaus，M．K．，Spivey－Knowlton，M．J．，Eberhard，K．，\＆ Sedivy，J．C．（1995）．Integration of visual and linguistic information in spoken language comprehension．Science， 268，1632－1634．

References XI

圊 Vasishth, S., Suckow, K., Lewis, R. L., \& Kern, S. (2010). Short-term forgetting in sentence comprehension: Crosslinguistic evidence from verb-final structures. Language \& Cognitive Processes, 25(4), 533-567.

[^0]: $P($ threw not erased) pmi(threw; out)

[^1]: P(threw not erased) pmi(threw; out)

