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Triangulating on a model of human(-like) language 
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(Recurrent Neural Network Grammar; Dyer et al, 2016)
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Human(-like) linguistic 

knowledge and use



Expectations in incremental comprehension

• Syntactic: 
Jamie was clearly intimidated… 

• Phonological knowledge: 
Terry ate an… 
Terry ate a… 

• Semantic & situational knowledge: 
The children went outside to… 
The squirrel stored some nuts in the…
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Context Prediction
Previous Input Current Input

by [source]

apple/orange/ice cream cone
nectarine/banana/sandwich

play
statue
tree

Extra-sentential 
information

These expectations from 
diverse contextual cues 
affect human language 
processing extremely 
quickly



Surprisal as an index of real-time processing load

4(Hale, 2001, NAACL; Levy, 2008, Cognition)

N400 size

(Federmeier & 
Kutas, 1999)

• Let a word’s difficulty be its surprisal given its context: 

• Captures the expectation intuition: the more we expect an 
event, the easier it is to process 
• Brains are prediction engines! 

• Predictable words are: 
• read faster (Ehrlich & Rayner, 1981) 
• have distinctive EEG responses (Kutas & Hillyard 1980) 

• with a language model that captures syntactic structure, 
we can get GRAMMATICAL EXPECTATIONS



Quantifying structure and surprise
• Hypothesis: a word’s difficulty is its surprisal in context:
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(Shannon, 1948: a basic quantity from information theory!)



Estimating probability/time curve shape
• As a proxy for “processing difficulty,” reading time in two 

different methods: self-paced reading & eye-tracking 
• Challenge: we need big data to estimate curve shape, but 

probability correlated with confounding variables
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(5K words) (50K words)



Estimating probability/time curve shape
• Generalized 

additive model 
regression: total 
contribution of 
word (trigram) 
probability to RT 
near-linear over 
6 orders of 
magnitude!
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(Smith & Levy, 2013)
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•On average, time linear in the word’s log-probability 
•Methodologically: reading puts control in the 

comprehender’s hands (and eyes!), allowing us to study 
processing difficulty through reading time

Take-away: how long to process a word in context?
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The woman brought the sandwich from the kitchen tripped.

A model system with incrementality, structure, and surprise
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The woman who was brought the sandwich from the kitchen tripped.

The woman given   the sandwich from the kitchen tripped.

The woman who was given the sandwich from the kitchen tripped.

Simple past Past participle

bring brought brought

give gave given

( )( )

( )

( )( )

( )



Low-tech, crowd-sourceable reading
• The maze task  
• Choose the word that fits given the preceding context
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The x-x-x

F J

of dogpretty chasedthe eat

(Forster et al., 2009; Boyce et al., 2020)



Incrementality, structure, and surprise

The woman brought the sandwich from the kitchen tripped.

The woman given   the sandwich from the kitchen tripped.

The woman who was given   the sandwich from the kitchen tripped.

The woman who was brought the sandwich from the kitchen tripped.
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Desiderata for human-like processing
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d

Define:

Then we can define three criteria for 
"human-like" processing:

(i)
(ii)
(iii)

S(x) = log
1

P(tripped |Contextx)

S(a) > S(b)
S(a) > S(c)
S(a) − S(b) > S(c) − S(d)



Deep learning has revolutionized language modeling
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(Hochreiter & Schmidhuber, 1997) 
(Image due to Christopher Olah)
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Quantitative calibration to human processing
• The surprisal–RT relationship in naturalistic reading:

14(Wilcox et al., 2020)



Quantitative calibration to human processing

15(Shain et al., 2022)



Brain signatures of predictive processing 

16

EEG

(Creator: Tim Sheerman-Case, CC-BY)

MEG

(Creator: J.M Eddings Jr, CC-BY-NC)

fMRI

(NIH Image Gallery, public domain)

ECoG

https://commons.wikimedia.org/wiki/File:Intracranial_electrode_grid_for_electrocorticography.png



The N400 in language comprehension
•Differing degrees of semantic congruity: 
• He took a sip from the drink. (normal) 
• He took a sip from the waterfall. (moderate incongruity) 
• He took a sip from the transmitter. (strong incongruity)
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(Kutas & Hillyard, 1980, 1984)



Word probability effects in the brain

18
(Original data: Federmeier et al., 2007; analysis: Szewczyk & Federmeier, 2022)

He brought her a pearl necklace for her... collection birthday

Weakly constraining

Strongly constraining

Joy was too frightened to... look move



Surprisal effects in audiobook listening
• Analytic framework:

19
(Heilbron et al., 2022)

EEG results (temporal) MEG results (temporal)



Aligning neural network embeddings to brain responses

20(Schrimpf et al., 2021)



Prediction versus surprise in ECoG

21(Goldstein et al., 2022)
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In-class exercise: explore GPT-2 word predictions



Psycholinguistic tests of AI language models 
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http://syntaxgym.org

(Gauthier et al., 2020)
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(Wilcox et al., 2021; see also van 
Schijndel &  Linzen, 2021) 25
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• Ubiquitous expectation-based inference, including prediction/surprisal 

• Noisy-channel mechanisms for error detection & robustness (Levy 2008, 
Gibson et al., 2013, Futrell et al., 2020) 

• And of course: Incremental semantic representations evaluable in context 
(Jacobson 1999, Aparicio et al. in prep)

Ingredients for theory of human language comprehension
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Information
Source

Intended
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Utterance

Transmitter Receiver

Input &
Memory

Destination

Inferred
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Noise
Source

Production Signal Received
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Comprehension

Prior: P (m)
Speaker likelihood:

P (u|m)
Input likelihood:

P (I|u)
Posterior:

P (m|I) / P (I|m)P (m)

P (u|I) / P (I|u)P (u)

Mary loves and John hates...
λx[LOVE(x)(mary) ∧HATE(x)(john)]

Click on the rabbit in the big...


