Predictive processing in human language comprehension
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Triangulating on a model of human(-like) language
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Expectations in incremental comprehension

Context Prediction
Previous Input  Current Input

e Syntactic:
Jamie was clearly intimidated... by [source]

e Phonological knowledge:
Terry ate an... apple/orange/ice cream cone

Terry ate a... nectarine/banana/sandwich

* Semantic & situational knowledge:
The children went outside to...play

These expectations from
diverse contextual cues
affect human language
processing extremely
quickly

The squirrel stored some nuts in the. M

free



Surprisal as an index of real-time processing load

Let a word'’s difficulty be its surprisal given its context:
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Captures the expectation intuition: the more we expect an

N400 size

event, the easier it is to process
e Brains are prediction engines!
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« read faster (Ehrlich & Rayner, 1981)
Noun cloze probability

* have distinctive EEG responses (Kutas & Hillyard 1980)  reqermeier
Kutas, 1999)

with a language model that captures syntactic structure,

we can get GRAMMATICAL EXPECTATIONS
(Hale, 2001, NAACL; Levy, 2008, Cognition) 4




Quantifying structure and surprise

e Hypothesis: a word'’s difficulty is its surprisal in context:
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(Shannon, 1948: a basic quantity from information theory!)



log Frequency

Estimating probability/time curve shape

As a proxy for “processing difficulty,” reading time in two
different methods: self-paced reading & eye-tracking

Challenge: we need big data to estimate curve shape, but
probability correlated with confounding variables

Brown data availability Dundee data availability

(5K words) (50K words)
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Estimating probability/time curve shape

e (Generalized

e Reading times in Gaze durations in
addltlve_ mOdel self-paced reading eye-tracking
regression: total  _ | .
contribution of
word (trigram) -

probability to RT
near-linear over
6 orders of
magnitude!
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Take-away: how long to process a word in context?

e On average, time linear in the word’s log-probability

* Methodologically: reading puts control in the
comprehender’s hands (and eyes!), allowing us to study
processing difficulty through reading time
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A model system with incrementality, structure, and surprise

The woman((who was)brought the sandwich from the kitchen )tripped.

The woman(given the sandwich from the kitchen )tripped.

The woman((who was)given the sandwich from the kitchen)tripped.

Simple past Past participle

bring brought brought

give gave



Low-tech, crowd-sourceable reading

 The maze task
e Choose the word that fits given the preceding context

oty ctemip

F J
The X-X-X
of dog
ALpretty chased
the eat
time
go. cat.

(Forster et al., 2009; Boyce et al., 2020)




Incrementality, structure, and surprise

Is the relative
clause reduced?

Is the participle
part-of-speech

ambiguous?
The woman brought the sandwich from the kitchen tripped. + +
The woman given the sandwich from the kitchen tripped. + —
The woman who was brought the sandwich from the kitchen tripped. == - +
The woman who was given the sandwich from the kitchen tripped. - —
1600
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Reduced RC, Ambiguous participle

1400 - Reduced RC, Unambiguous participle
—o— Unreduced RC, Ambiguous participle
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Desiderata for human-like processing

The woman brought the sandwich from the kitchen
The woman given the sandwich from the kitchen
The woman who was brought the sandwich from the

The woman who was given the sandwich from the

Is the participle

Is the relative art-of-speech
clause reduced? P -Sp
ambiguous?
tripped. + +
tripped. + —
kitchen tripped. c — +

kitchen tripped.

1600 4
Condition
Reduced RC, Ambiguous participle
1400 - Reduced RC, Unambiguous participle

—o— Unreduced RC, Ambiguous participle

1

P(tripped | Context,)

Then we’can define three criteria for
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Deep learning has revolutionized

GPT =3 (Zero-Shot)

Qf) (ﬁf) (Vaswani et al., 2017)
\ T
l (Hochreiter & Schmidhuber, 1997)
@ (Image due to Christopher Olah)
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https.//paperswithcode.com/sota/language-modelling-on-penn-treebank-word

2021

language modeling
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Quantitative calibration to human processing

e The surprisal-RT relationship in naturalistic reading:
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Quantitative calibration to human processing

GPT-3 GPT-J GPT-2 PCFG N-gram
Change {ms Change (ms)

Cloze

Change (ms)

Change {ms)

Change (ms)

Y
)

Change (ms)

(Shain et al., 2022)
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Brain signatures of predictive processing

(Creator: Tim Sheerman-Case, CC-BY)

(NIH Image Gallery, public domain)

MEG

(Creator: J.M Eddings Jr, CC-BY-NC)

ECoG

Sensory area Motor area

Surgical opening i

Electrocorticography

https://commons.wikimedia.org/wiki/File:Intracranial_electrode_grid_for_electrocorticography.png
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The N400 in language comprehension

e Differing degrees of semantic congruity:

e too
e too
e too

K a sip from t
K a sip from t

K a sip from t

ne drink. (normal)
ne waterfall. (moderate incongruity)

ne transmitter. (strong incongruity)

(Kutas & Hillyard, 1980, 1984)
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Word probability effects in the brain

Weakly constraining Joy was too frightened to... look

Strongly constraining He brought her a pearl necklace for her... collection
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(Original data: Federmeier et al., 2007, analysis: Szewczyk & Federmeier, 2022) 18



Surprisal effects in audiobook listening

* Analytic framework:
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(Heilbron et al., 2022)
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Aligning neural network embeddings to brain responses

Pereira2018
Fedorenko2016
Blank2014

Internal Neural

Language Stimuli

"Beekeeping encourages the conservation of local
habitats. It is in every beekeeper's interest..."

“Alex was tired so he took a nap.”

“If you were to journey to the North of England, you
would come to a valley that is surrounded by moors
as high as mountains. It is in this valley where you...”
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Prediction versus surprise in ECoG

Electrode 1

Electrode 2

Electrode 3

Electrode 4
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Prodcting neural signals from word embeddings at each lag
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(Goldstein et al., 2022)

Correlation

Reconstructed noural signal

Word onset (ms)

Incorrect predictions

s GPT-2's prediction
I Perceived word

Correct predictions
mmmmm—— (GPT-2’s prediction = perceived word)

2,000
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In-class exercise: explore GPT-2 word predictions

22



Psycholinguistic tests of Al language models

SyntaxGym This is a beta release of SyntaxGym. Please send questions and comments to contact@syntaxgym.org.

E SyntaxGym

Test suites - . -
SyntaxGym is a unified platform for targeted syntactic evaluation of language models. The Gym supports all steps of the evaluation process, from designing

test suites to visualizing final results. Our goal is to make psycholinguistic assessment of language models more standardized, reproducible, and accessible to
Language models a wide variety of researchers

Visualizations

TEST SUITES LANGUAGE MODELS VISUALIZATIONS
Create new psycholinguistic test suites, or Evaluate a set of neural language models Visualize results across models and test
browse existing ones in our database ranging in architecture and size suites through interactive charts

/

Documentation

_o

'

33 available suites 8 available models

-
ee more 2
See more 2 See more = > 4

Not sure where to start? Read our FAQ or take a look at the documentation

http:/syntaxgym.org

(Gauthier et al., 2020)

23



References

Boyce, V., Futrell, R., & Levy, R. (2020). Maze made easy: Better and easier measurement of incremental processing difficulty. Journal of Memory and
Language, 111, 1{13.

Federmeier, K. D., Wlotko, E. W., Ochoa-Dewald, E. D., & Kutas, M. (2007). Multiple effects of sentential constraint on word processing. Brain Research,
1146, 75{84.

Forster, K. 1., Guerrera, C., & Elliot, L. (2009). The maze task: Measuring forced incremental sentence processing time. Behavior Research Methods, 41(1),
163{171.

Futrell, R., Wilcox, E., Morita, T., Qian, P., Ballesteros, M., & Levy, R. (2019). Neural language models as psycholinguistic subjects: Representations of
syntactic state, In Proceedings of the 18th Annual

Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies.

Gauthier, J., Hu, J., Wilcox, E., Qian, P., & Levy, R. P. (2020). SyntaxGym: An online platform for targeted evaluation of language models, In Proceedings of
the 58th annual meeting of the Association for Computational

Linguistics.

Goldstein, A., Zada, Z., Buchnik, E., Schain, M., Price, A., Aubrey, B., Nastase, S. A., Feder, A., Emanuel, D., Cohen, A., Jansen, A., Gazula, H., Choe, G.,
Rao, A., Kim, C., Casto, C., Fanda, L., Doyle, W.,

Friedman, D., Dugan, P., Melloni, L., Reichart, R., Devore, S., Flinker, A., Hasenfratz, L., Levy, O., Hassidim, A., Brenner, M., Matias, Y., ... Hasson, U.
(2022). Shared computational principles

for language processing in humans and deep language models. Nature Neuroscience, 25(3), 369{380.

Hale, J. (2001). A probabilistic Earley parser as a psycholinguistic model, In Proceedings of the second meeting of the north american chapter of the
Association for Computational Linguistics, Pittsburgh, Pennsylvania. Heilbron, M., Armeni, K., Schoffelen, J.-M., Hagoort, P., & Lange, F. P. d. (2022). A
hierarchy of linguistic predictions during natural language comprehension. Proceedings of the National Academy of Sciences,

119(32), e2201968119.

Hu, J., Gauthier, J., Qian, P., Wilcox, E., & Levy, R. P. (2020). A systematic assessment of syntactic generalization in neural language models, In
Proceedings of the 58th annual meeting of the Association

for Computational Linguistics.

Kutas, M., & Hillyard, S. A. (1980). Reading senseless sentences: Brain potentials reflect semantic incongruity. Science, 207(4427), 203{205.

Kutas, M., & Hillyard, S. A. (1984). Brain potentials during reading reflect word expectancy and semantic association. Nature, 307, 161{163.

Levy, R. (2008). Expectation-based syntactic comprehension. Cognition, 106(3), 1126{1177.

Schrimpf, M., Blank, I. A., Tuckute, G., Kauf, C., Hosseini, E. A., Kanwisher, N., Tenenbaum, J. B., & Fedorenko, E. (2021). The neural architecture of
language: Integrative modeling converges on predictive

processing. Proceedings of the National Academy of Sciences, 118(45).

Shain, C., Meister, C., Pimentel, T., Cotterell, R., & Levy, R. P. (2022). Large-scale evidence for logarithmic effects of word predictability on reading time.
PsyArXiv.

Shannon, C. (1948). A mathematical theory of communication. Bell Systems Technical Journal, 27(4), 623{656.

Smith, N. J., & Levy, R. (2013). The effect of word predictability on reading time is logarithmic. Cognition, 128(3), 302{319.

Szewczyk, J. M., & Federmeier, K. D. (2022). Context-based facilitation of semantic access follows both logarithmic and linear functions of stimulus
probability. Journal of Memory and Language, 123, 104311. Van Schijndel, M., & Linzen, T. (2021). Single-stage prediction models do not explain the
magnitude of syntactic disambiguation difficulty. Cognitive Science, 45(6), e12988.

Vani, P., Wilcox, E. G., & Levy, R. P. (2021). Using the Interpolated Maze task to assess incremental processing in English relative clauses, In Proceedings of
the 43rd annual meeting of the Cognitive Science 24
Societv.




1600 -

Human
reaction times

1400 -

Mean RT per word
N
3

Condition

—®— Reduced RC, Ambig. participle
—8— Reduced RC, Unambig. participle
—8— Unreduced RC, Ambig. participle

Unreduced RC, Unambig. participle

B
Pooling many controlled ?

experiments, regress human

RTs again.?t mod(_el surprisal worna?
and examine residual

12.5+

10.0

GPT-2 Surprisal

7.51

Mean surprisal per word

5.0

(Wilcox et al., 2021; see also van
Schijndel & Linzen, 2021)
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Ingredients for theory of human language comprehension

Ubiquitous expectation-based inference, including prediction/surprisal

Context Prediction
Previous Input  Current Input

Noisy-channel mechanisms for error detection & robustness (Levy 2008,
Gibson et al., 2013, Futrell et al., 2020)

Information

Source Transmitter Receiver Destination
[
Production Signal Received Comprehension

Intended Utterance Signal ~ Input Inferred

message Memory message
Prior: P(m) Speaker likelihood: Input likelihood: Posterior:

rior: Am P(u|m) Noise P(I|u) P(m|I) < P(I|m)P(m)

Source P(ull) o< P(I|u)P(u)

And of course: Incremental semantic representations evaluable in context
(Jacobson 1999, Aparicio et al. in prep)
Click on the rabbit in the big...

Mary loves and John hates...
AX[LOVE(x)(mary) AHATE(x)(john)]




