Transformer language models, targeted syntactic evaluation, and learnability

Roger Levy
9.19: Computational Psycholinguistics 6 November 2023

Agenda for today

- The Transformer
- Targeted syntactic testing: filler-gap dependencies
- Learnability: syntactic islands

The Transformer model

Motivating the Transformer model

Motivating the Transformer model

- With RNNs, a fixed-dimension model could propagate information indefinitely into the future...but it's hard!

Motivating the Transformer model

- With RNNs, a fixed-dimension model could propagate information indefinitely into the future...but it's hard!
- We can make RNNs deep by stacking them...

Motivating the Transformer model

- With RNNs, a fixed-dimension model could propagate information indefinitely into the future...but it's hard!
- We can make RNNs deep by stacking them...

Motivating the Transformer model

- With RNNs, a fixed-dimension model could propagate information indefinitely into the future...but it's hard!
- We can make RNNs deep by stacking them...

Motivating the Transformer model

- With RNNs, a fixed-dimension model could propagate information indefinitely into the future...but it's hard!
- We can make RNNs deep by stacking them...

Motivating the Transformer model

Motivating the Transformer model

- ...but input distant in the context is still far away.

Motivating the Transformer model

- ...but input distant in the context is still far away.
- Solution: make all context words equally distant from w_{i} !

Motivating the Transformer model

- ...but input distant in the context is still far away.
- Solution: make all context words equally distant from w_{i} !

Motivating the Transformer model

- ...but input distant in the context is still far away.
- Solution: make all context words equally distant from w_{i} !

Input + Positional Embedding

Input + Positional Embedding

Word embedding matrix:

Input + Positional Embedding

Word embedding matrix:

Input + Positional Embedding

Word embedding matrix: d

Input + Positional Embedding

Word embedding matrix: d

Position embedding matrix:

Input + Positional Embedding

Word embedding matrix: d

Position embedding matrix:

40

Input + Positional Embedding

Word embedding matrix: d

Position embedding matrix:

40

Input + Positional Embedding

Word embedding matrix: d

Position embedding matrix:

the
the

Input + Positional Embedding

Word embedding matrix: d

Position embedding matrix:

40

the

The positional embedding function

$$
P E(p o s, 2 i)=\sin \left(\frac{p o s}{10000^{\frac{2 i}{d}}}\right) \quad P E(p o s, 2 i+1)=\cos \left(\frac{p o s}{10000^{\frac{2 i}{d}}}\right)
$$

$$
d=512
$$

The Transformer unit

The Transformer unit

(Figure from Radford et al., 2018)

The Transformer unit

(Figure from Radford et al., 2018)

Neural Attention

Query, Key, and Value

Neural Attention

Query, Key, and Value

Neural Attention

Query, Key, and Value

Attention function options: $\quad e_{j}= \begin{cases}v \tanh \left[W_{Q} Q+W_{K} K_{j}\right] & \text { (Bahdanau et al., 2014) } \\ Q^{T} W K_{j} & \text { (Luong et al., 2015) } \\ \frac{Q^{T} K}{\sqrt{|K|}} & \text { (Vaswani et al., 2017) }\end{cases}$

Neural Attention

Query, Key, and Value

$$
\alpha_{1}, \ldots, \alpha_{i-1}=\operatorname{softmax}\left(e_{1}, \ldots, e_{i-1}\right)
$$

Attention function options: $\quad e_{j}= \begin{cases}v \tanh \left[W_{Q} Q+W_{K} K_{j}\right] & \text { (Bahdanau et al., 2014) } \\ Q^{T} W K_{j} & \text { (Luong et al., 2015) } \\ \frac{Q^{T} K}{\sqrt{|K|}} & \text { (Vaswani et al., 2017) }\end{cases}$

Neural Attention

Query, Key, and Value

$$
\alpha_{1}, \ldots, \alpha_{i-1}=\operatorname{softmax}\left(e_{1}, \ldots, e_{i-1}\right)
$$

Attention function options: $\quad e_{j}= \begin{cases}v \tanh \left[W_{Q} Q+W_{K} K_{j}\right] & \text { (Bahdanau et al., 2014) } \\ Q^{T} W K_{j} & \text { (Luong et al., 2015) } \\ \frac{Q^{T} K}{\sqrt{|K|}} & \text { (Vaswani et al., 2017) }\end{cases}$

Neural Attention

Query, Key, and Value

Attention function options: $\quad e_{j}= \begin{cases}v \tanh \left[W_{Q} Q+W_{K} K_{j}\right] & \text { (Bahdanau et al., 2014) } \\ Q^{T} W K_{j} & \text { (Luong et al., 2015) } \\ \frac{Q^{T} K}{\sqrt{|K|}} & \text { (Vaswani et al., 2017) }\end{cases}$

Neural Attention

Query, Key, and Value

Attention function options: $\quad e_{j}=\left\{\begin{array}{l}v \tanh [\\ Q^{T} W K_{j} \\ \frac{Q^{T} K}{\sqrt{|K|}}\end{array}\right.$
(Bahdanau et al., 2014)
(Luong et al., 2015)
(Vaswani et al., 2017)

A single masked attention "head"

A single masked attention "head"

W_{K}, W_{V}, and W_{Q} are all learned during training

A single masked attention "head"

A single masked attention "head"

A single masked attention "head"

W_{K}, W_{V}, and W_{Q} are all learned during training

A single masked attention "head"

W_{K}, W_{V}, and W_{Q} are all learned during training

A single masked attention "head"

A single masked attention "head"

A single masked attention "head"

Subsequent context words are masked

from attention

$$
x_{3}
$$

w_{2}
w_{3}

A single masked attention "head"

O_{2}

w_{1}
w_{2}
w_{3}
(Vaswani et al., 2017)

A single masked attention "head"

$$
o_{2}
$$

w_{1}

w_{2}
w_{3}

A single masked attention "head"

$$
o_{2}
$$

w_{2}
w_{3}

A single masked attention "head"

(Vaswani et al., 2017)

Multi-headed attention

Residual connection \& layer normalization

Feed-forward layer

Res. connection \& layer norm. (again)

Res. connection \& layer norm. (again)

Res. connection \& layer norm. (again)

Res. connection \& layer norm. (again)

Res. connection \& layer norm. (again)

Res. connection \& layer norm. (again)

Res. connection \& layer norm. (again)

Transformer + a huge corpus $=\ldots$...

New Al fake text generator may be too dangerous to release, say creators
辈

- The Guardian
- OpenAl text-generating tool GPT2 won't be released for fear of misuse
- Business Insider

OpenAI has published the text-generating AI it said was too dangerous to share
GPT-2 is part of a new breed of text-generation systems that have impressed experts with their ability to generate coherent text from minimal ...

Write With Transformer

transformer.huggingface.co

Giant language model testing room: http://gltr.io/dist/index.html

Papers to read to understand GPT-2

- Radford et al. (2019): the GPT-2 paper itself
- Radford et al. (2018): the GPT architecture, mostly shared by GPT-2
- Liu et al. (2018): the Transformer decoder
- Vaswani et al. (2017): the original Transformer paper
- Ba et al. (2016): layer normalization

The full Transformer model

The full Transformer model

- In ML/NLP, the model we just studied is called the Transformer decoder

The full Transformer model

- In ML/NLP, the model we just studied is called the Transformer decoder
- Sometimes, the Transformer is conditioned on a string that doesn't itself get predicted-this is called the encoder

The full Transformer model

- In ML/NLP, the model we just studied is called the Transformer decoder
- Sometimes, the Transformer is conditioned on a string that doesn't itself get predicted-this is called the encoder
- Only difference: in encoder, attention is over the entire string, not just words to the left

The full Transformer model

- In ML/NLP, the model we just studied is called the Transformer decoder
- Sometimes, the Transformer is conditioned on a string that doesn't itself get predicted-this is called the encoder
- Only difference: in encoder, attention is over the entire string, not just words to the left
- BERT = Transformer encoder!

Google has updated its search algorithm: Say hello to BERT
SmartCompany.com.au • Nov 4
(Devlin et al., 2018)

GPT-2 on targeted syntax testing

syntaxgym.org

SyntaxGym is a unified platform where language and NLP researchers can design psycholinguistic tests and visualize the performance of language models. Our goal is to make psycholinguistic assessment of language models more standardized, reproducible, and accessible to a wide variety of researchers. The project is run out of the MIT Computational Psycholinguistics Laboratory.

language models

Have a model you want to evaluate? Add a model as a Docker container, and it will automatically be evaluated on existing test suites.

See more \rightarrow

visualizations

Want to compare the results of different models across test suites? Visualize model performance through interactive charts.

See more \rightarrow

Not sure where to start? Read more or take a look at the documentation.

Filler-gap dependencies

I know that the lion devoured the gazelle at sunrise.

Filler-gap dependencies

I know that the lion devoured the gazelle at sunrise.

Filler-gap dependencies

Filler-gap dependencies

$\sqrt{ }$ I know that my brother said our aunt devoured the cake at the party.

* I know what my brother said our aunt devoured the cake at the party.
\checkmark I know that my brother said our aunt devoured the cake at the party.
* I know what my brother said our aunt devoured the cake at the party.

\checkmark I know that my brother said our aunt devoured the cake at the party.
* I know what my brother said our aunt devoured the cake at the party.
* I know that my brother said our aunt devoured \qquad at the party.

I know what my brother said our aunt devoured \qquad at the party.

\checkmark I know that my brother said our aunt devoured the cake at the party. * I know what my brother said our aunt devoured the cake at the party. * I know that my brother said our aunt devoured \qquad at the party.
$\boldsymbol{\checkmark}$ I know what my brother said our aunt devoured \qquad at the party.

\checkmark I know that my brother said our aunt devoured the cake at the party. * I know what my brother said our aunt devoured the cake at the party. * I know that my brother said our aunt devoured \qquad at the party.
$\boldsymbol{\checkmark}$ I know what my brother said our aunt devoured \qquad at the party.

I know that my brother said our aunt devoured the cake at the party. * I know what my brother said our aunt devoured the cake at the party. * I know that my brother said our aunt devoured \qquad at the party.
$\sqrt{ } \boldsymbol{I}$ know what my brother said our aunt devoured ___ at the party.

I know that my brother said our aunt devoured the cake at the party. * I know what my brother said our aunt devoured the cake at the party. * I know that my brother said our aunt devoured \qquad at the party.
$\sqrt{ } \boldsymbol{I}$ know what my brother said our aunt devoured ___ at the party.

Unboundedness of wh-dependencies

I know what our mother gave __ to Mary last weekend.

Unboundedness of wh-dependencies

I know what our mother gave _ to Mary last weekend.

I know what our mother said that your friend gave __ to Mary last weekend.

Unboundedness of wh-dependencies

0 I know what our mother gave __ to Mary last weekend.

1 I know what our mother said that your friend gave _ to Mary last weekend.

Unboundedness of wh-dependencies

0 I know what our mother gave __ to Mary last weekend.

1 I know what our mother said that your friend gave _ to Mary last weekend.

2 I know what our mother said that her friend remarked that your friend gave __ to Mary last weekend.

$\underline{\text { Unboundedness of } w h \text {-dependencies }}$

0 I know what our mother gave __ to Mary last weekend.

1 I know what our mother said that your friend gave _ to Mary last weekend.

2 I know what our mother said that her friend remarked that your friend gave __ to Mary last weekend.

3 I know what our mother said that her friend remarked that the park attendant wondered that your friend gave __ to Mary last weekend.

$\underline{\text { Unboundedness of } w h \text {-dependencies }}$

0 I know what our mother gave __ to Mary last weekend.

1 I know what our mother said that your friend gave _ to Mary last weekend.

2 I know what our mother said that her friend remarked that your friend gave __ to Mary last weekend.

3 I know what our mother said that her friend remarked that the park attendant wondered that your friend gave __ to Mary last weekend.

4 I know what our mother said that her friend remarked that the park attendant wondered that the people stated that your friend gave __ to Mary last weekend.

Unboundedness: Object Gap JRNN (~1b words)

GRNN (~100m words)

Potential concern \#1

Couldn't the models be learning a linear dependency between filler and gap, not a hierarchical dependency?

Syntactic Hierarchy

- A filler must be appropriately "above" its gap

Potential concern \#1

Couldn't the models be learning a linear dependency between filler and gap, not a hierarchical dependency?

Potential concern \#1 - addressed

Couldn't the models be learn filler and gap, not a rchical dependency?

Our results suggest that RNN models trained on enough data are sensitive to syntactic hierarchy for wh-dependency

Does syntactic supervision help?

Does syntactic supervision help?

Grammar-based model (RNNG)

Does syntactic supervision help?

Syntactic supervision helps a lot!

- With small-dataset training (1m words):

Syntactic Hierarchy

Grammar-based model (RNNG)

Sequence model (LSTM)

Syntactic island constraints

Syntactic island constraints

- Some types of phrases are islands: filler-gap dependencies cannot link from outside to inside of them

Syntactic island constraints

- Some types of phrases are islands: filler-gap dependencies cannot link from outside to inside of them

- Islands are prominent in learnability debates: they'd require learning from negative evidence, and are rare structures

Syntactic island constraints

- Some types of phrases are islands: filler-gap dependencies cannot link from outside to inside of them

- Islands are prominent in learnability debates: they'd require learning from negative evidence, and are rare structures
- We take a language model to have learned an island constraint if it fails to propagate filler-generated expectations for gaps into phrases that should be islands

Syntactic islands

Wh-complementizers block filler-gap dependencies:

I know what Alex said...

> ...$y o u r ~ f r i e n d ~ d e v o u r e d ~$ [null $\frac{1}{\text { complementizer] }}$ at the party.

Syntactic islands

Wh-complementizers block filler-gap dependencies:

I know what Alex said...

> ...$y o u r ~ f r i e n d ~ d e v o u r e d ~$ [null $\frac{1}{\text { complementizer] }}$ at the party.

Syntactic islands

Wh-complementizers block filler-gap dependencies:

I know what Alex said...

$$
\begin{array}{r}
\text {...your friend devoured } \\
\text { [null } \frac{1}{\text { complementizer] }} \text { at the party. }
\end{array}
$$

...that your friend devoured __ at the party. [that complementizer]

Syntactic islands

Wh-complementizers block filler-gap dependencies:

I know what Alex said...

$$
\begin{array}{r}
\text {...your friend devoured } \frac{\square}{\text { [null }} \text { at the party. } \\
\text { complementizer] }
\end{array}
$$

> ...that your friend devoured __ at the party. [that complementizer]

Syntactic islands

Wh-complementizers block filler-gap dependencies:

I know what Alex said...

$$
\begin{array}{r}
\text {...your friend devoured } \frac{\square}{\text { [null }} \text { at the party. }
\end{array}
$$

> ...that your friend devoured __ at the party. [that complementizer]

...whether your friend devoured __ at the party. [wh-complementizer]

Syntactic islands

Wh-complementizers block filler-gap dependencies:

I know what Alex said...

$$
\begin{array}{r}
\text {...your friend devoured } \\
\text { [null } \frac{1}{\text { complementizer] }} \text { at the party. }
\end{array}
$$

> ...that your friend devoured __ at the party. [that complementizer]

* ...whether your friend devoured __ at the party. [wh-complementizer]

Syntactic islands

Wh-complementizers block filler-gap dependencies:

I know what Alex said...

$$
\begin{array}{r}
\text {...your friend devoured } \\
\text { [null } \frac{1}{\text { complementizer] }} \text { at the party. }
\end{array}
$$

...that your friend devoured __ at the party. [that complementizer]

* ...whether your friend devoured _ at the party. [wh-complementizer]

Do the RNNs learn this?

I know that my brother said our aunt devoured the cake at the party. I know what my brother said our aunt devoured the cake at the party. I know that my brother said our aunt devoured \qquad at the party.

I know what my brother said our aunt devoured \qquad at the party.

I know that my brother said that our aunt devoured the cake at the party. I know what my brother said that our aunt devoured the cake at the party. I know that my brother said that our aunt devoured \qquad at the party.

I know what my brother said that our aunt devoured \qquad at the party.

island

- no-comp
- that-comp
- wh-comp
gap
no-gap
- - gap

I know that my brother said whether our aunt devoured the cake at the party. I know what my brother said whether our aunt devoured the cake at the party. I know that my brother said whether our aunt devoured \qquad at the party.

I know what my brother said whether our aunt devoured \qquad at the party.

Potential concern \#2

Could RNNs have difficulty threading any type of expectation into a syntactic island?

Gendered-pronoun Expectation Control

Gendered-pronoun Expectation Control

- Worry: Can the models thread any expectation into islands?

Gendered-pronoun Expectation Control

- Worry: Can the models thread any expectation into islands?
- Test with expectation for gendered pronouns set up by culturally or morphologically gendered subjects.

Gendered-pronoun Expectation Control

- Worry: Can the models thread any expectation into islands?
- Test with expectation for gendered pronouns set up by culturally or morphologically gendered subjects.
\checkmark The actress said that they insulted her friends. [CONTROL, MATCH]

Gendered-pronoun Expectation Control

- Worry: Can the models thread any expectation into islands?
- Test with expectation for gendered pronouns set up by culturally or morphologically gendered subjects.
\checkmark The actress said that they insulted her friends. [CONTROL, MATCH]
\# The actress said that they insulted his friends. [CONTROL, MISMATCH]

Gendered-pronoun Expectation Control

- Worry: Can the models thread any expectation into islands?
- Test with expectation for gendered pronouns set up by culturally or morphologically gendered subjects.

Gendered-pronoun Expectation Control

- Worry: Can the models thread any expectation into islands?
- Test with expectation for gendered pronouns set up by culturally or morphologically gendered subjects.

Gendered-pronoun Expectation Control

- Worry: Can the models thread any expectation into islands?
- Test with expectation for gendered pronouns set up by culturally or morphologically gendered subjects.

Gender Expectation Effect (\#- (should be positive)	\sum^{\checkmark}	The actress said that they insulted her friends. [CONTROL, MATCH] The actress said that they insulted his friends. [CONTROL, MISMATCH]
	\checkmark	The actress said whether they insulted her friends. [ISLAND, MATCH]
	\#	The actress said whether they insulted his friends. [ISLAND, MISMATCH]

Gendered-pronoun Expectation Control

- Worry: Can the models thread any expectation into islands?
- Test with expectation for gendered pronouns set up by culturally or morphologically gendered subjects.

Gender Expectation Effect (\#- , should be positive)	$\left(\begin{array}{ll} \checkmark & \text { The actress said that they insulted her friends. } \\ & {[C O N T R O L, \text { MATCH] }} \end{array}\right\} \begin{aligned} & \\ & \# \\ & \text { The actress said that they insulted his friends. } \\ & {[\text { [CONTROL, MISMATCH] }} \end{aligned}$
$?$	$\left(\begin{array}{ll}\checkmark & \text { The actress said whether they insulted her friends. } \\ & \text { [ISLAND, MATCH] } \\ \# & \\ & \text { The actress said whether they insulted his friends. } \\ & \text { [ISLAND, MISMATCH] }\end{array}\right.$

Gendered-pronoun Expectation Control

- Worry: Can the models thread any expectation into islands?
- Test with expectation for gendered pronouns set up by culturally or morphologically gendered subjects.

Gendered-pronoun Expectation Control

- Worry: Can the models thread any expectation into islands?
- Test with expectation for gendered pronouns set up by culturally or morphologically gendered subjects.

Gendered-pronoun Expectation Control

- Worry: Can the models thread any expectation into islands?
- Test with expectation for gendered pronouns set up by culturally or morphologically gendered subjects.

The actress said that they insulted her friends. [CONTROL, MATCH]
\# The actress said that they insulted his friends. [CONTROL, MISMATCH]

Gendered-pronoun Expectation Control

- Worry: Can the models thread any expectation into islands?
- Test with expectation for gendered pronouns set up by culturally or morphologically gendered subjects.

The actress said that they insulted her friends.
[CONTROL, MATCH]
\# The actress said that they insulted his friends. [CONTROL, MISMATCH]

The actress said whether they insulted her friends. [ISLAND, MATCH]
\# The actress said whether they insulted his friends. [ISLAND, MISMATCH]

If models can thread gender expectation into islands, the gender expectation effect should look the same in islands as in the control conditions.
(Wilcox et al., 2019, CogSci)

The actress said that they insulted her friends.
The actress said that they insulted his friends.

The actress said that they insulted her friends.
The actress said that they insulted his friends.

The actress said that they insulted her friends.
The actress said that they insulted his friends.

The actress said that they insulted her friends.
The actress said that they insulted his friends. The actress said whether they insulted her friends. The actress said whether they insulted his friends.

The actress said that they insulted her friends.
The actress said that they insulted his friends. The actress said whether they insulted her friends. The actress said whether they insulted his friends.

The actress said that they insulted her friends.
The actress said that they insulted his friends. The actress said whether they insulted her friends. The actress said whether they insulted his friends.

Potential concern \#2

Could RNNs have difficulty threading any type of expectation into a syntactic island?

Potential concern \#2 - addressed

Could RNNs have difficulty ading any type of expectation into a sy tic island?

RNN models that learn island constraints still propagate pronoun gender expectations into islands

References

Ba, J. L., Kiros, J. R., \& Hinton, G. E. (2016). Layer normalization. arXiv preprint arXiv:1607.06450.
Bahdanau, D., Cho, K., \& Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. CoRR, abs/1409.0473. arXiv: 1409.0473
Devlin, J., Chang, M.-W., Lee, K., \& Toutanova, K. (2018). BERT: Pre-training of deep bidirectional transformers for language understanding. Proceedings of the 17th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies.
Gauthier, J., Hu, J., Wilcox, E., Qian, P., \& Levy, R. P. (2020). SyntaxGym: An online platform for targeted evaluation of language models. In Proceedings of the 58th annual meeting of the Association for Computational Linguistics.
Hu, J., Gauthier, J., Qian, P., Wilcox, E., \& Levy, R. P. (2020). A systematic assessment of syntactic generalization in neural language models. In Proceedings of the 58th annual meeting of the Association for Computational Linguistics.
Liu, P. J., Saleh, M., Pot, E., Goodrich, B., Sepassi, R., Kaiser, L., \& Shazeer, N. (2018). Generating wikipedia by summarizing long sequences. In Proceedings of ICLR.
Luong, T., Pham, H., \& Manning, C. D. (2015). Effective approaches to attention-based neural machine translation. In Proceedings of the 2015 conference on empirical methods in natural language processing (pp. 1412-1421).
Radford, A., Narasimhan, K., Salimans, T., \& Sutskever, I. (2018). Improving language understanding by generative pre-training.
Vaswani, A., Shazeer, N., Parmar, N.,Uszkoreit, J.,Jones,L.,Gomez, A.N.,Kaiser,L囵.,\& Polosukhin, I.(2017). Attention is all you need. In Proceedings of Neural Information Processing Systems (pp. 5998-6008). Wilcox, E., Levy, R. P., \& Futrell, R. (2019). What syntactic structures block dependencies in RNN language models? In Proceedings of the 41st annual meeting of the Cognitive Science Society (pp. 1199-1205). Wilcox, E., Levy, R. P., Morita, T., \& Futrell, R. (2018). What do RNN language models learn about filler-gap dependencies? In Proceedings of the workshop on analyzing and interpreting neural networks for NLP. Wilcox, E., Qian, P., Futrell, R., Ballesteros, M., \& Levy, R. (2019). Structural supervision improves learning of non-local grammatical dependencies. In Proceedings of the 18th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 3302-3312).

