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Agenda for today

 The Transformer
* Targeted syntactic testing: filler—gap dependencies
e Learnability: syntactic islands



The Transformer model
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Motivating the Transformer model

* With RNNs, a fixed-dimension model could propagate
information indefinitely into the future...but it's hard!

 We can make RNNs deep by stacking them...
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Motivating the Transformer model

e ...but input distant in the context is still far away.
 Solution: make all context words equally distant from w,!
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Input + Positional Embedding

Word embedding matrix: Position embedding matrix:
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The positional embedding function
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The Transformer unit
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Neural Attention

Query, Key, and Value
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A single masked attention "head”
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Wi, Wy, and W, are all learned during training

(Vaswani et al., 2017)



A single masked attention "head”

Subsequent context
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A single masked attention "head”
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Multi-headed attention
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Residual connection & layer normalization
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Feed-forward layer
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Res. connection & layer norm. (again)
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Res. connection & layer norm. (again)
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Transformer + a huge corpus = ...?

AR
New Al fake text generator may be too dangerous to release, say T
creators e

3 The Guardian

- OpenAl text-generating tool GPT2 won't be released for fear of misuse L
& Business Insider
IE View Full Coverage Feb 14,2019
V' The Verge

OpenAl has published the text-generating Al it said was
too dangerous to share

GPT-2 is part of a new breed of text-generation systems that have
impressed experts with their ability to generate coherent text from minimal ...
Nov 7, 2019

Write With Transformer |

transformer.huggingface.co

Giant language model testing room: http://gltr.io/dist/index.html



Papers to read to understand GPT-2

Radford et al. (2019): the GPT-2 paper itself

Radford et al. (2018): the GPT architecture, mostly shared
by GPT-2

Liu et al. (2018): the Transformer decoder
Vaswani et al. (2017): the original Transformer paper
Ba et al. (2016): layer normalization



The full Transformer model

* |n ML/NLP, the model we just
studied is called the
Transformer decoder

e Sometimes, the Transformer is
conditioned on a string that

doesn't itself get predicted—this
Is called the encoder

e Only difference: in encoder,
attention is over the entire
string, not just words to the left

e BERT = Transformer encoder!

Google has updated its search algorithm: Say hello to BERT __

= _ad
E &

SmartCompany.com.au - Nov 4

(Devlin et al., 2018)
(Vaswani et al., 2017)
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GPT-2 on targeted syntax testing

SYNTAXGYM

@ Dashboard

Test suites

Language models

Visualizations

Documentation

(Gauthier et al., 2020; Hu et al., 2020)

syntaxgym.org

8 SyntaxGym

SyntaxGym is a unified platform where language and NLP researchers can design psycholinguistic tests and visualize the performance of language models. Our goal is to make psycholinguistic

assessment of language models more standardized, reproducible, and accessible to a wide variety of researchers. The project is run out of the MIT Computational Psycholinguistics Laboratory.

TEST SUITES

Interested in viewing or designing psycholinguistic
test suites? Create a new test suite online or

upload one as a . json file.

See more =

LANGUAGE MODELS

Have a model you want to evaluate? Add a model as
a Docker container, and it will automatically be

evaluated on existing test suites.

See more =

Not sure where to start? Read more or take a look at the documentation

VISUALIZATIONS
Want to compare the results of different models
across test suites? Visualize model performance

through interactive charts.

See more =


http://syntaxgym.org

Filler—gap dependencies

/ I know that the lion devoured the gazelle at sunrise.

22 (Wilcox et al. 2018, Blackbox NLP)



Filler—gap dependencies
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Filler—gap dependencies
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Filler—gap dependencies
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NP

Filler—gap dependencies
/S\ Approach: Wh-Licensing Interaction
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Surprisal of region
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I know that my brother said our aunt devoured the cake at the party.
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Unboundedness of wh-dependencies

0 I know what our mother gave ___ to Mary last weekend.

1 I know what our mother said that your friend gave __ to
Mary last weekend.

2 I know what our mother said that her friend remarked
that your friend gave __ to Mary last weekend.

3 I know what our mother said that her friend remarked that
the park attendant wondered that your friend gave ___ to
Mary last weekend.

4 T know what our mother said that her friend remarked that
the park attendant wondered that the people stated that
your friend gave __ to Mary last weekend.

28



Wh-Licensing Interaction
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Potential concern #1

Couldn’t the models be learning a linear dependency between
filler and gap, not a hierarchical dependency?

30



Syntactic Hierarchy

* Afiller must be appropriately “above” its gap
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(Wilcox et al., 2019, CogSci)
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Potential concern #1

Couldn’t the models be learning a linear dependency between
filler and gap, not a hierarchical dependency?

37



Potential concern #1 — addressed

Couldn’t the models be lear
filler and gap, not a

linear dependency between
chical dependency?

Our results suggest that RNN models trained on enough data
are sensitive to syntactic hierarchy for wh-dependency

38



Does syntactic supervision help?

NT(S) NT(NP) GEN(Th) GEN(ungr) GEN(ca) REDUCE NT(VP) |
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(Wilcox et al., 2019, NAACL) 39



Syntactic supervision helps a lot!

o With small-dataset training (1m words):

Syntactic Hierarchy
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Syntactic island constraints

 Some types of phrases are islands: filler—gap dependencies
cannot link from outside to inside of them

* |slands are prominent in learnability debates: they'd require
learning from negative evidence, and are rare structures

 We take a language model to have learned an island
constraint if it fails to propagate filler-generated expectations
for gaps into phrases that should be islands

41



Syntactic islands

Wh-complementizers block fille—gap dependencies:

I know what Alex said..

.your friend devoured ___ at the party.
[null complementizer]

Do the RNNSs learn this?
(Wilcox et al., 2018, BlackBox) 42



N * %N

I know that my brother said our aunt devoured the cake at the party.

I know my brother said our aunt devoured the cake at the party.
I know that my brother said our aunt devoured at the party.
I know my brother said our aunt devoured at the party.
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N * %N

I know that my brother said that our aunt devoured the cake at the party.
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Sum wh-effect in region

I know that my brother said whether our aunt devoured the cake at the party.
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Potential concern #2

Could RNNs have difficulty threading any type of expectation
into a syntactic island?

46



Gendered-pronoun Expectation Control

 Worry: Can the models thread any expectation into islands?

» Test with expectation for gendered pronouns set up by
culturally or morphologically gendered subjects.

~ v The actress said that they insulted her friends.

Gender Expectation [CONTROL, MATCH]
Effect (#-v should be
positive) # The actress said that they insulted his friends.

S
P - [CONTROL, MISMATCH]

NP VP -~
/\ /\,\ v The actress said whether they insulted her friends.
the actress said.:" SBAR .., ’) [ISLAND, MATCH]
h th/\ \# The actress said whether they insulted his friends.
W o /\ [ISLAND, MISMATCH]
. NP
‘ /\ ‘:‘ If models can thread gender expectation into

% islands, the gender expectation effect should
/\ look the same in islands as in the control
conditions.

friends :'

S
S
S
S
S
S
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Y
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(Wilcox et al., 2019, CogSci)
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The actress said that they insulted her friends.

The actress said that they insulted his friends.

The actress said whether they insulted her friends.

The actress said whether they insulted his friends.
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=== match
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Potential concern #2

Could RNNs have difficulty threading any type of expectation
into a syntactic island?

49



Potential concern #2 — addressed

Could RNNs have difficulty
Intoa s

ding any type of expectation
ic island?

RNN models that learn island constraints still propagate
pronoun gender expectations into islands

50
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