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Agenda for the day
• Last time: with a hidden layer, a NN can learn XOR...


• ...but language isn't just 2D input+2-class output! So, today:

•Dealing with language in neural networks

•Recurrent neural networks (RNNs)

• Simple recurrent networks (SRNs)

• Gated recurrent units (GRUs)

• Long short-term memory networks (LSTMs)


• Examining RNN behavior 2
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Dealing with language inputs
For language, input  and output prediction  seem discrete:


Simplest approach is localist or one-hot representations:


But lower-dimensional embeddings capture word similarities:
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Adam adores zebras ...
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Example feed-forward+embedding LM
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Bengio et al., 2003: Neural n-gram language model



Old (2003!) perplexity results on Brown corpus
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neural 
language 
models

(Bengio et al., 
2003)

n-gram 
language 
models



The neural n-gram model

•Advantages: generalizes over n-gram contexts

• Limitations:

• this is for a fixed dimensionality input context

• how to model variable-length context, like sentences?
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Recurrent neural networks for language
•Draw inspiration from real-time nature of human language 

processing

• Previous inputs must be integrated and remembered all 

together in a uniform representational space

7(Jordan, 1986; Elman, 1990)

The woman brought the sandwich from …

sentence representation



The Simple Recurrent Network (SRN)
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Input  at time 0x

Context layer 
at time 0

Hidden layer  
at time 0

h

Next-word prediction  at time 0y

(Elman, 1990)

ht = σ(Uhht−1 + Whxt)

P(wt |Context) = softmax(yt)

yt+1 = Wyht

Weight 
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SRN "rolled up" and unrolled
• A “rolled-up” representation (Elman, 1990); and unrolled:
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The woman brought the sandwich from …

sentence representation

Predict!



10(Elman, 1990)

Learning with 
artificial language 
input



Used localist word representations

11(Elman, 1990)



Learning word classes
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cat eat cookie

woman see cat

mouse eat bread

dragon eat cat

cat move

cat chase mouse
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Discovered similarity 
structure of words

(Elman, 1990)



Beyond the simple recurrent network
• The SRN has a very strong linear locality bias

• But natural language syntax is characterized by 

hierarchical structure

• SRNs can learn hierarchy (Elman, 1991), but it is hard—

their inductive bias disfavors it

14

The cat that the dog chased …

sentence representation



More sophisticated recurrent units
• Another view of an unrolled SRN:


• Keep the recurrent structure and “swap in” a new unit:

15visualization due to Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

(LSTM; Hochreiter & Schmidhuber, 1997)



Gated Recurrent Unit (GRU) architecture

16visualization due to Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

rt = σ(Wrxt + Urht−1)

zt = σ(Wzxt + Uzht−1)

h̃t = tanh(Wxt + U(rt ⊙ ht−1)

ht = (1 − zt) ⊙ ht−1 + zt ⊙ h̃t

element-wise 
multiplication

logistic/sigmoid activation function

ht

(e.g., )⟨1,2,3⟩ ⊙ ⟨0.5,2,1⟩ = ⟨0.5,4,3⟩



Long short-term memory (LSTM) units

17visualization due to Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

(Hochreiter & Schmidhuber, 1997)



Inside the LSTM unit
• The “hidden layer” was used to predict element t of 

the sequence

• It now gets passed through a “forget gate”

ht−1

18
(Hochreiter & Schmidhuber, 1997)

visualization due to Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

ft = σ(Ufht−1 + Wf xt)



Inside the LSTM unit
• Other information from ht-1 gets put into the memory store

19visualization due to Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

it = σ(Uiht−1 + Wixt)

C̃t = tanh(UCht−1 + WCxt)



Inside the LSTM unit
• That information gets integrated into the memory store 

(which also gets passed on to the future

20visualization due to Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Ct = ft ⊙ Ct−1 + it ⊙ C̃t



Inside the LSTM unit
• Finally, we determine the new hidden layer to predict 

input t+1

21visualization due to Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

ot = σ(Uoht−1 + Woxt)

ht = ot ⊙ tanh(Ct)



Ct−1

ht−1

Ct

ht

ft it C̃t

ot

The LSTM unit, complete
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ht

ft it C̃t

ot

visualization due to Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

ft = σ(Ufht−1 + Wf xt)
it = σ(Uiht−1 + Wixt)

C̃t = tanh(UCht−1 + WCxt)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t

ot = σ(Uoht−1 + Woxt)

ht = ot ⊙ tanh(Ct)



Learning the classic counting language

23

^ab$

^aabb$

^aaabbb$

^aaaabbbb$

^aaaaabbbbb$

^aaaaaabbbbbb$

^aaaaaaabbbbbbb$

^aaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbb$

⋮

N=20 N=20

S → a b

S → a S b 

(Weiss et al. 2018, ACL)

anbn Easily generable with a context-free grammar:

Dtrain



Training recurrent architectures on anbn
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Hidden & cell state contents
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GRU hidden state

SRN hidden state LSTM hidden state

LSTM cell state

(Weiss et al. 2018, ACL)



Summary
• Mechanisms for neural networks at the sentence level:


• Learned word embeddings

• Recurrent state representation


• Different units used for recurrent state representation:

• Simple recurrent network (SRN)

• Gated recurrent unit (GRU)

• Long short-term memory (LSTM)


• For classic counting language, LSTM works the best
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