Logistic regression and simple
multi-layer neural networks

Roger Levy
9.19: Computational Psycholinguistics
2 November 2023

Agenda for the day

* Review logistic regression (case study: binomial ordering
preferences)

e Limitations of linear classifiers like logistic regression
e Basic multi-layer neural networks & backpropagation

* Expressing and learning solutions to non-linear
classification problems

* VVanishing gradients and activation functions

Recap: binomial ordering preferences

* In each pair, which phrase sounds more natural?

Recap: binomial ordering preferences

* In each pair, which phrase sounds more natural?

pepper and salt salt and pepper

Recap: binomial ordering preferences

* In each pair, which phrase sounds more natural?

pepper and salt salt and pepper

hit and run run and hit

Recap: binomial ordering preferences

* In each pair, which phrase sounds more natural?

pepper and salt salt and pepper
hit and run run and hit

gold and silver silver and gold

Recap: binomial ordering preferences

* In each pair, which phrase sounds more natural?

pepper and salt salt and pepper
hit and run run and hit
gold and silver silver and gold

deer and trees trees and deer

Recap: binomial ordering preferences

* In each pair, which phrase sounds more natural?

pepper and salt salt and pepper
hit and run run and hit
gold and silver silver and gold
deer and trees trees and deer

drink and food food and drink

Recap: binomial ordering preferences

* In each pair, which phrase sounds more natural?

pepper and salt salt and pepper
hit and run run and hit
gold and silver silver and gold
deer and trees trees and deer

drink and food food and drink

skirts and sweaters sweaters and skirts

Recap: binomial ordering preferences

* In each pair, which phrase sounds more natural?

pepper and salt salt and pepper
hit and run run and hit
gold and silver silver and gold
deer and trees trees and deer
drink and food food and drink
skirts and sweaters sweaters and skirts

bishops and seamstresses seamstresses and bishops

Recap: binomial ordering preferences

* In each pair, which phrase sounds more natural?

pepper and salt

hit
gold
deer
drink
skirts
bishops

few

and
and
and
and
and
and

and

run

silver

trees

food
sweaters
seamstresses

unfavorable

salt

run

silver

trees

food
sweaters
seamstresses

unfavorable

and
and
and
and
and
and
and

and

pepper
hit
gold
deer
drink
skirts
bishops

few

Recap: binomial ordering preferences

pepper
hit
gold
deer
drink
skirts
bishops
few

cat

and salt
and run
and silver
trees

food

and
and
and sweaters
and seamstresses
and unfavorable

and mouse

salt

run

silver

trees

food
sweaters
seamstresses
unfavorable

mouse

and
and
and
and
and
and
and
and

and

* In each pair, which phrase sounds more natural?

pepper
hit
gold
deer
drink
skirts
bishops
few

cat

Recap: binomial ordering preferences

* In each pair, which phrase sounds more natural?

pepper and salt salt and pepper
hit and run run and hit
gold and silver silver and gold
deer and trees trees and deer
drink and food food and drink
skirts and sweaters sweaters and skirts
bishops and seamstresses seamstresses and bishops
few and unfavorable unfavorable and few
cat and mouse mouse and cat
quilting and sewing sewing and quilting

Recap: binomial ordering preferences

* In each pair, which phrase sounds more natural?

pepper and salt salt and pepper
hit and run run and hit
gold and silver silver and gold
deer and trees trees and deer
drink and food food and drink
skirts and sweaters sweaters and skirts
bishops and seamstresses seamstresses and bishops
few and unfavorable unfavorable and few
cat and mouse mouse and cat
quilting and sewing sewing and quilting
interest and principal principal and interest

Multiple, cross-cutting constraints

Constraint Example Strength
lconic/scalar sequencing open and read 20
Perceptual markedness deer and trees 1.7
Formal markedness change and improve 1.4
Power food and drink 1
Avoid final stress confuse and disorient 0.5
Short<Long cruel and unusual 0.4

Frequent<Infrequent neatly and sweetly 0.3

Multiple, cross-cutting constraints

Constraint Example Strength
lconic/scalar sequencing open and read 20
Perceptual markedness deer and trees 1.7
Formal markedness change and improve 1.4

Power food and drink 1

Avoid final stress confuse and disorient 0.5
Short<Long cruel and unusual 0.4
Frequent<Infrequent neatly and sweetly 0.3

 Logistic regression to capture effects on ordering preference:
77:61X1+62X2+"'+5NXN

Multiple, cross-cutting constraints

] Constraint Example Strength
lconic/scalar sequencing open and read 20
Perceptual markedness deer and trees 1.7
(X) Formal markedness change and improve 1.4

Power food and drink 1

Avoid final stress confuse and disorient 0.5
Short<Long cruel and unusual 0.4
i Frequent<Infrequent neatly and sweetly 0.3

 Logistic regression to capture effects on ordering preference:
77:61X1+62X2+"'+5NXN

Multiple, cross-cutting constraints

] Constraint Example Strength)
lconic/scalar sequencing open and read 20
Perceptual markedness deer and trees 1.7

(X) Formal markedness change and improve 1.4 (3
Power food and drink 1

Avoid final stress confuse and disorient 0.5
Short<Long cruel and unusual 0.4

i Frequent<Infrequent neatly and sweetly 0.3)

 Logistic regression to capture effects on ordering preference:
77:61X1—|—52X2—|—“'—|—5NXN

Multiple, cross-cutting constraints

] Constraint Example Strength)
lconic/scalar sequencing open and read 20
Perceptual markedness deer and trees 1.7
Formal markedness change and improve 1.4

{X;} hil
Power food and drink 1

Avoid final stress confuse and disorient 0.5
Short<Long cruel and unusual 0.4

i Frequent<Infrequent neatly and sweetly 0.3)

 Logistic regression to capture effects on ordering preference:
EZﬂle—l—ﬁng—l—“‘—FﬁNXN

“goodness score”

Multiple, cross-cutting constraints

] Constraint Example Strength)
lconic/scalar sequencing open and read 20
Perceptual markedness deer and trees 1.7
Formal markedness change and improve 1.4

{X;} hil
Power food and drink 1

Avoid final stress confuse and disorient 0.5
Short<Long cruel and unusual 0.4

i Frequent<Infrequent neatly and sweetly 0.3)

 Logistic regression to capture effects on ordering preference:
EZﬂle—l—ﬁng—l—“‘—FﬁNXN

“goodness score”

7
P(“success”) = -

1+ en

Multiple, cross-cutting constraints

] Constraint Example Strength)
lconic/scalar sequencing open and read 20
Perceptual markedness deer and trees 1.7
Formal markedness change and improve 1.4

{X;} hil
Power food and drink 1

Avoid final stress confuse and disorient 0.5
Short<Long cruel and unusual 0.4

i Frequent<Infrequent neatly and sweetly 0.3)

 Logistic regression to capture effects on ordering preference:
EZﬂle—l—ﬁng—l—“‘—FﬁNXN

“goodness score”

7
P(“success”) = -

1+ en

a.k.a. mean yu

Multiple, cross-cutting constraints

(X}

h

Constraint Example Strength
lconic/scalar sequencing open and read 20
Perceptual markedness deer and trees 1.7
Formal markedness change and improve 1.4

Power food and drink 1

Avoid final stress confuse and disorient 0.5
Short<Long cruel and unusual 0.4
Frequent<Infrequent neatly and sweetly 0.3

i}

-

 Logistic regression to capture effects on ordering preference:

E:/Ble—I_BQXQ—l_—'_ﬁNXN 0.75-

“goodness score”

P(“success”) =

o'l
1+ en

a.k.a. mean yu

1.004

= 0.50 A

0.25 1

0.001

50 -25 0.0 25 5.0

n

Multiple, cross-cutting constraints

(X}

h

Constraint Example Strength
lconic/scalar sequencing open and read 20
Perceptual markedness deer and trees 1.7
Formal markedness change and improve 1.4

Power food and drink 1

Avoid final stress confuse and disorient 0.5
Short<Long cruel and unusual 0.4
Frequent<Infrequent neatly and sweetly 0.3

i}

-

 Logistic regression to capture effects on ordering preference:

E:/Ble—I_BQXQ—l_—'_ﬁNXN 0.75-

“goodness score”

P(“success”) =

o'l
1+ en

a.k.a. mean yu

1.004

= 0.50 A

0.25 1

0.001

50 -25 0.0 25 5.0

n

A two-constraint example

A two-constraint example

e Constraints: word length (# syllables) and word frequency

A two-constraint example

e Constraints: word length (# syllables) and word frequency
N = BSyIXSyl + 6FreqXFreq

A two-constraint example

e Constraints: word length (# syllables) and word frequency
N = BSyIXSyl + 6FreqXFreq
677
1+ e

P(“success”) =

A two-constraint example

e Constraints: word length (# syllables) and word frequency

1.00

T — BSyIXSyl + 6FreqXF’req 075

« 7 e’ = 0.50°
P(“success”) =

1 _|_ 677 0.25+

0.00+

-5.0 -25 0.0 25 5.0
n

A two-constraint example

e Constraints: word length (# syllables) and word frequency

1.001
77 — BSyIXSyl —|_ /BFreqXF,req 075
e’ 3 0.50-
P(“success”) = .
1+ e -
000i=—"
Arbitrarily define: -5.0 -2.5 oY.]o 25 50

"success"—alphabetical ordering

A two-constraint example

e Constraints: word length (# syllables) and word frequency

1.00 ¢
N = BSyIXSyl + 5FreqXF’req 075
e'l = 0.50-
P(“success”) = 5
1 _I_ 67’] 0.25+
0.00-; 1 1 1 1
Arbitrarily define: O
"success"—alphabetical ordering
Short<Long Freq<Infreq
calm and relaxed
big and thick n/a
down and out n/a X
cruel and unusual X

anger and spite

crochet and knit

X
X

A two-constraint example

e Constraints: word length (# syllables) and word frequency

1.001
77 — BSyIXSyl —|_ /BFreqXF,req 075
e’ 3 0.50-
P(“success”) =
1 _|_ 677 0.25
000i=—"
Arbitrarily define: -5.0 -2.5 oY.]o 25 50

"success"—alphabetical ordering

Short<Long X5, Freq<Infreq

-~

calm and relaxed 1

big and thick n/a 0
down and out n/a 0 X
cruel and unusual 1 X

anger and spite) ¢ -1
crochet and knit X -1 X

A two-constraint example

e Constraints: word length (# syllables) and word frequency

1.001
77 — BSyIXSyl —|_ /BFreqXF,req 075
e’ 3 0.50-
P(“success”) =
1 _|_ 677 0.25
000i=—"
Arbitrarily define: -5.0 -2.5 oY.]o 25 50

"success"—alphabetical ordering

Short<Long Xs, Freq<Infreq Xg.,

-~

calm and relaxed 1 1
big and thick n/a 0 1
down and out n/a 0 X -1
cruel and unusual 1 X -1

anger and spite

crochet and knit

X X

Learning constraint weights

1.00-

0.75-

N = ﬁSleSyl =+ BFreqXFreq -

0.25-

en 0.00 -
P(“success”) = —— S0 35 0o 25 50
1+ en "

Short<Long? Xsy1 Freq<Infreq Xrreq

calm and relaxed 1 1

big and thick n/a 0 1

down and out n/a 0 x -1

cruel and unusual 1 x -1

anger and spite X -1 1
X

crochet and knit

Learning constraint weights

Goal: Estimate good values from data ']
0.75 -

AW
)~ s

en 0.00 -
P(“success”) = —— S0 35 0o 25 50
1+ en "

Short<Long? Xsyi Freq<Infreq Xrreq

calm and relaxed 1 1

big and thick n/a 0 1

down and out n/a 0 x -1

cruel and unusual 1 x -1

anger and spite X -1 1
X

crochet and knit

Learning constraint weights

Goal: Estimate good values from data ']
0.75 -

AW
)~ s

e'l

«“ M\ 0.001—/

P(“success”) = —— S0 35 0o 25 50
1_—F e’l n
Short<Long? Xsy Freq<Infreq Xrreq
calm and relaxed 1 1
big and thick n/a 0 1
down and out n/a 0 X -1
cruel and unusual 1 X -1
anger and spite X -1 1
crochet and knit X -1 X -1
people and soils X -1 1
surprised and dubious 1 1
abused and neglected 1

X X

lurched and stumbled 1

Learning constraint weights

Goal: Estimate good values from data ']
0.75 -

AW
)~ s

e'l

«“ 9 00— +—

P(“success”) = —— S0 35 0o 25 50
1_—F e’l n

Short<Long? Xsy1 Freq<Infreq Xrreq
calm and relaxed 1 1
big and thick n/a 0 1
down and out n/a 0 X -1
cruel and unusual 1 X -1
anger and spite X -1 1
crochet and knit X -1 X -1
people and soils X -1 1
surprised and dubious 1 1
abused and neglected 1 X -1

lurched and stumbled 1 Y -1

Then, e.g. find maximum-likelihood estimates <3Syl’ ﬁFreq>

Maximum of the likelihood surface

For logist regre , likelihood
surface is convex — relatively
asy to find o ptm um o
L.
eml

Maximum of the likelihood surface

1.5

1.0 1

For logistic regression, likelihood
surface is convex — relatively
easy to find optimum o

T 05-

eol

Crucial notion: gradient, the
“derivative in all directions” on a

multidimensional surface 0.0 -

—-0.5 1

—0I.5 0:0 0.5 1.0 1.5

Maximum of the likelihood surface

1.5

1.0 1

For logistic regression, likelihood
surface is convex — relatively
easy to find optimum o

T 05-

eol

Crucial notion: gradient, the
“derivative in all directions” on a

multidimensional surface 0.0 -

—-0.5 1

—0I.5 0:0 0.5 1.0 1.5

Maximum of the likelihood surface

1.5

1.0 1

For logistic regression, likelihood
surface is convex — relatively
easy to find optimum o

T 0.5-

eml
Crucial notion: gradient, the
“derivative in all directions” on a
multidimensional surface 0.0

—-0.5 1

—0I.5 0:0 0.5 1.0 1.5

Maximum of the likelihood surface

1.5 1

1.0 1

For logistic regression, likelihood
surface is convex — relatively
easy to find optimum o

Crucial notion: gradient, the
“derivative in all directions” on a
multidimensional surface 0.0 -

VsLik(Data; 5)

BSyI

Maximum of the likelihood surface

1.5 1

1.0 1

For logistic regression, likelihood
surface is convex — relatively
easy to find optimum o

r 0.5+

Crucial notion: gradient, the
“derivative in all directions” on a

multidimensional surface 0.0 -

VsLik(Data; 5)

—-0.5 1

(8 Lik(Data; 8) 0 Lik(Data; 5))
001 ’ 052

1.0

Maximum of the likelihood surface

For logistic regression, likelihood
surface is convex — relatively
easy to find optimum o

L
eol

Crucial notion: gradient, the
“derivative in all directions” on a
multidimensional surface

VsLik(Data; 5)

—-0.5 1

(8 Lik(Data; 8) 0 Lik(Data; 5))
001 ’ 052

0.0 1

OO

0:0 0.5 1.0 1.5

Maximum of the likelihood surface

— (0.48,0.40) '°7

<BSyl7 B\Freq>
\

For logistic regression, likelihood
surface is convex — relatively
easy to find optimum o

Crucial notion: gradient, the
“derivative in all directions” on a

multidimensional surface 0.0 -

VsLik(Data; 5)

—-0.5 1

(8 Lik(Data; 8) 0 Lik(Data; 5))
001 ’ 052

1.0 1.5

Limitations of logistic regression

e Logistic regression defines a hyperplane boundary
separating P("success" | X) > 0.5 from P("success" | X) < 0.5

Limitations of logistic regression

e Logistic regression defines a hyperplane boundary
separating P("success" | X) > 0.5 from P("success" | X) < 0.5

(Bsyts Brreq) = (0.48,0.40)

Limitations of logistic regression

e Logistic regression defines a hyperplane boundary
separating P("success" | X) > 0.5 from P("success" | X) < 0.5

(Bsyts Brreq) = (0.48,0.40)

n = 0.48Xgsy + 0.4 X preq
el
1+ en

P(“success") =

Limitations of logistic regression

e Logistic regression defines a hyperplane boundary
separating P("success" | X) > 0.5 from P("success" | X) < 0.5

(Bsyts Brreq) = (0.48,0.40)

n = 0.48Xgsy + 0.4 X preq
el
1+ en

1.00 1
0.75+
= 0.50 A
0.25
0.00 A

-5.0 -25 0.0 25 5.0
n

P(“success") =

Limitations of logistic regression

e Logistic regression defines a hyperplane boundary
separating P("success" | X) > 0.5 from P("success" | X) < 0.5

(Bsyts Brreq) = (0.48,0.40)

n = 0.48Xgsy + 0.4 X preq
el
1+ en

1.00 1
0.75+
= 0.50 A
0.25
0.00 A

-5.0 -25 0.0 25 5.0
n

0 = 0.48 X5y, + 0.4X frreq

P(“success") =

Limitations of logistic regression

e Logistic regression defines a hyperplane boundary
separating P("success" | X) > 0.5 from P("success" | X) < 0.5

(Bsyts Brreq) = (0.48,0.40)

n = 0.48Xgsy + 0.4 X preq
el
1+ en

1.00 1
0.75+
= 0.50 A
0.25
0.00 A

-5.0 -25 0.0 25 5.0
n

0 = 0.48 X5y, + 0.4X frreq

P(“success") =

Limitations of logistic regression

e Logistic regression defines a hyperplane boundary
separating P("success" | X) > 0.5 from P("success" | X) < 0.5

(Bsyts Brreq) = (0.48,0.40)

n=0.48Xgy + 0.4X preq
[carefully and calmly

el
1+ en

P(“success") =

1.00 1

0.75+

o
2 0.50- L‘li_’ 0-

0.25

O.OO- IIIII
-5.0 25 0.0 25 5.0

n

0=048Xgy + 04X ey | |

[crochet and knit]

—XSyl -1 0]

Problems that aren't linearly separable

Problems that aren't linearly separable

e But many prediction problems aren't linearly separable

Problems that aren't linearly separable

e But many prediction problems aren't linearly separable

x1 Xo (Class

O O 1

XOR o 1 0
problem

1 0 0

1 1

Problems that aren't linearly separable

e But many prediction problems aren't linearly separable

x1 xo Class
O O 1
XOR O 1 O X2
problem
1 O 0
1 1 1 X

Problems that aren't linearly separable

e But many prediction problems aren't linearly separable

x1 xo Class
O O 1
XOR O 1 O X2
problem
1 O 0
1 1 1 X

More generally, we want flexibly-shaped class boundaries:

L]
° Ry e o ° ° e
e o ®

Logistic regression as a “neuron’

Biological neuron

. \Eomo.xt

Feedforward

10

Logistic regression as a “neuron’

. . Artificial neuron
Biological neuron

Inputs Activation Output
function

Bias unit corresponds to intercept term

Feedforward

10

Logistic regression as a “neuron’

. . Artificial neuron
Biological neuron

Inputs Activation Output
function

Bias unit corresponds to intercept term

Feedforward el

77225iXi 'u:1+6’7

10

Logistic regression as a “neuron’

. . Artificial neuron
Biological neuron

Inputs Activation Output
function

Bias unit corresponds to intercept term

Feedforward el

77225iXi 'u:1+6’7

\ \

z=Wzx+b a= f(2)

10

Neurons are organized

n networks

BULLETIN OF
MATHEMATICAL BIOPHYSICS
VOLUME 5, 1943

A LOGICAL CALCULUS OF THE
IDEAS IMMANENT IN NERVOUS ACTIVITY

WARREN S. MCCULLOCH AND WALTER PITTS

FroM THE UNIVERSITY OF ILLINOIS, COLLEGE OF MEDICINE,
DEPARTMENT OF PSYCHIATRY AT THE ILLINOIS NEUROPSYCHIATRIC INSTITUTE,
AND THE UNIVERSITY OF CHICAGO

Because of the “all-or-none” character of nervous activity, neural
events and the relations among them can be treated by means of propo-
sitional logic. It is found that the behavior of every net can be described
in these terms, with the addition of more complicated logical means for
nets containing circles; and that for any logical expression satisfying
certain conditions, one can find a net behaving in the fashion it describes.
It is shown that many particular choices among possible neurophysiologi-
cal assumptions are equivalent, in the sense that for every net behav-
ing under one assumption, there exists another net which behaves un-
der the other and gives the same results, although perhaps not in the
same time. Various applications of the calculus are discussed.

Ficure 1

A simple single-hidden-layer neural network

Input Hidden Output
Lo ho Wi,
\ Woi)
w w
02 02
m
h Predict: is y class 1 or class 27
w n
z1 hy "1 y
n
h w
Wi, 12
Wl Up:
h 21
Wi ;
L2 5 o) ">,

12

A simple single-hidden-layer neural network

Input Hidden Output
Lo ho ng
1
Woz m
Predict: is y class 1 or class 27
I hl Wyl y
Wi
wl 2

12

A simple single-hidden-layer neural network

Input Hidden Output
U
Lo ho Woi
1
Woz m
Predict: is y class 1 or class 27
7
T hy " y
1
12
72
1
a1
L2 hy) 2,

12

A simple single-hidden-layer neural network

Input Hidden Output
1
Lo ho Woi
1
Woz m
Predict: is y class 1 or class 27
7
T1 hy " y
1
12
72
1
a1
L2 hy) 2,

12

A simple single-hidden-layer neural network

Input Hidden Output
L0
m
Predict: is y class 1 or class 27
T Y
72

12

A simple single-hidden-layer neural network

Input Hidden Output
L0
m
Predict: is y class 1 or class 27
I y
72
L2

12

A simple single-hidden-layer neural network

Input Hidden Output
L0
m
Predict: is y class 1 or class 27
T Y
T2
L2
H = WhX n = W'f(H)

/

nonlinear activation function
(e.g., sigmoid)

12

A simple single-hidden-layer neural network

Input Hidden Output
Lo ho
m
Predict: is y class 1 or class 27
L1 h1 y
72
L2 h2
H = WhX n = W'f(H)

/

nonlinear activation function
(e.g., sigmoid)

12

A simple single-hidden-layer neural network

Input Hidden Output
Lo ho
m
Predict: is y class 1 or class 27
X1 h1 ——> Y
72
L2 hg
H = WhX n = W'f(H)

/

nonlinear activation function
(e.g., sigmoid)

12

A simple single-hidden-layer neural network

Input Hidden Output

Lo ho

T

Predict: is y class 1 or class 27
371 }ll ——> :y
Logistic ("softmax") output prediction:
M2 o
P(y = 1]x,x)) =
75 hg e 4 ez
H = WhX n = Wf(H)

/

nonlinear activation function
(e.g., sigmoid)

12

A simple single-hidden-layer neural network

Input Hidden Output

Lo ho

T

Predict: is y class 1 or class 27
X1 h1 ——> Y
Logistic ("softmax") output prediction:
M2 o
P(y = 1]x,x)) =
75 hg e 4 ez
H = WhX n = W (H) P(y| X) = softmax(#)

/

nonlinear activation function
(e.g., sigmoid)

12

A simple single-hidden-layer neural network

Input Hidden Output

Lo ho

T

Predict: is y class 1 or class 27
X1 h1 ——> Y
Logistic ("softmax") output prediction:
M2 o
P(y = 1]x,x)) =
75 hg e 4 ez
H = WhX n = W (H) P(y| X) = softmax(#)

/

nonlinear activation function
(e.g., sigmoid)

P(y | X) = softmax(W" f(W"X))

12

Gradient descent with neural networks

Logistic ("softmax") output prediction:

nonlinear activation function 1 6771
(e.g., sigmoid) P — X , X —
(y | X15 X3) 1+ ol
H=W'X n = WIf(H)

Lo h()

m

Cost C(n, y)

L1 hl — 4> y

72

13

Gradient descent with neural networks

Logistic ("softmax") output prediction:
nonlinear activation function 6771

(e.g., sigmoid) P(y — 1 |x1,x2) —

e 4 e

H = WhX n = WIf(H)
To improve the model's weights, we

L0 ho iteratively compute V,C(7,y) and
move the weights in that direction

m
Cost C(n, y)
L1 hq — >

T2

13

Gradient descent with neural networks

Logistic ("softmax") output prediction:
nonlinear activation function 6771

(e.g., sigmoid) P(y — 1 |x1,x2) —

e 4 e
H=W'X n=WIfH | |
To improve the model's weights, we
L0 ho iteratively compute V,C(7,y) and
move the weights in that direction

m

Chain rule of calculus:
Cost C.y) ity = f(uy, ...,u,) and u; = g,(x),
L1 hy - dy & dy ou,

then — = —
0x ; ou; ox

T2

13

Gradient descent with neural networks

Logistic ("softmax") output prediction:
nonlinear activation function 6771

(e.g., sigmoid) P(y — 1 |x1,x2) —

e 4 e
H = WhX n = WIf(H)
oC

To improve the model's weights, we
Lo h()

owl, iteratively compute V,C(7,y) and
\ move the weights in that direction
n Chain rule of calculus:
Cost C(1.y) ity = f(uy, ..., u,) and u; = g,(x),
L1 hy - dy & dy ou,

then — = —
0x ; ou; ox

T2

13

Gradient descent with neural networks

Logistic ("softmax") output prediction:

nonlinear activation function 1 enl
(e.g., sigmoid) P . X , X —
(y | X1, %) 1+ ol
H = WhX n = WIf(H) | |
oC To improve the model's weights, we
Lo ho ow, iteratively compute V,C(7,y) and
aC move the weights in that direction
ow(, 771)

Chain rule of calculus:
Cost C(1.y) ity = f(uy, ..., u,) and u; = g,(x),

L1 hy - dy & dy ou,

then — = —
0x ; ou; ox

T2

13

Gradient descent with neural networks

Logistic ("softmax") output prediction:

nonlinear activation function 1 enl
(e.g., sigmoid) P . X , X —
(y | X1, X7) o+ oh
H=W'X 7 =WI(H) . |
oC To improve the model's weights, we
Lo ho owl, iteratively compute V,C(7,y) and
aC move the weights in that direction
ow(, m)
aC Chain rule of calculus:
ow!l, Cost C(n,y) ify = f(uy, ..., u,) and u; = g,(x),
L1 hy - dy & dy ou,

then — = —
0x ; ou; ox

T2

—

13

Gradient descent with neural networks

Logistic ("softmax") output prediction:

nonlinear activation function 1 enl
(e.g., sigmoid) P . X , X —
(y | X1, %) o+ oh
H=W'X 5 =W/¥H . |
oC To improve the model's weights, we
Lo ho owl, iteratively compute V,C(7,y) and
aC move the weights in that direction
ow(, 771)
oC Chain rule of calculus:
ow!l, Cost C(n,y) ify = f(uy, ..., u,) and u; = g,(x),
L1 hi — > 0 — 0y Ou;
oC then — = z _
aW?z 6x im1 du,- dx
2

—

L2 hg

13

Gradient descent with neural networks

Logistic ("softmax") output prediction:
nonlinear activation function enl

(e.g., sigmoid) P(y — 1 |x1,x2) —

e 4 e
H = W"X n = WIf(H) . .
oC To improve the model's weights, we
Lo ho owl, iteratively compute V,C(7,y) and
aC move the weights in that direction

ow(, 771
oC Chain rule of calculus:

Cost C(n,y) if y =f(u1, . un) and u; = gi(x),
— P y 0 zn: 0y aMi

then — = —_—
al/ll' ax

ox _—

13

Gradient descent with neural networks

Logistic ("softmax") output prediction:

nonlinear activation function 1 enl
(e.g., sigmoid) P . X , X —
(y | X1, X7) o+ oh
H = WhX n = WIf(H) | |
oC To improve the model's weights, we
Lo ho owl, iteratively compute V,C(7,y) and
aC move the weights in that direction
owg, m N
aC Chain rule of calculus:
ow!l, Cost C(n,y) ify = f(uy, ..., u,) and u; = g,(x),
L1 hi — > 0 — 0y Ou;
aC then — = z —_—
o ox = du;, ox
12 aC l=1
T2

13

Gradient descent with neural networks

H = WhX
Lo h()
oC
ow(,
oC
ow/,
I hl
oC
ow,
L2 hg

Logistic ("softmax") output prediction:

nonlinear activation function enl

(e.g., sigmoid)

n = WITf(H)
oC
oW,
it

P — | =
(y |x17 x2) el + o'

To improve the model's weights, we
iteratively compute V,C(7,y) and
move the weights in that direction

Chain rule of calculus:
Cost C(1.y) ity = f(uy, ..., u,) and u; = g,(x),
— > 0 i dy Ou;

then — = —
0x ou; ox

i=1

13

Gradient descent with neural networks

Logistic ("softmax") output prediction:

nonlinear activation function enl

(e.g., sigmoid)

H = WhX n = W'f(H)
oC
L0 oC hO owy,
owl, oC
ow(,
1
oC 77
ow/,
I hl
oC
ow,
oC
2
owy, 77
oC
) hQ ,

P — | =
(y |x17 x2) el + o'

To improve the model's weights, we
iteratively compute V,C(7,y) and
move the weights in that direction

Chain rule of calculus:
Cost C(1.y) ity = f(uy, ..., u,) and u; = g,(x),

mhad 0 =~ Jy Ou,
then — = Z—y—l
0x _— ou; ox

13

Gradient descent with neural networks

_0C ow]; oC ow, Logistic ("softmax") output prediction:
N ow'. owh ow'. owh nonlinear activation function enl
11 9Wo1 12 OWo1 (e.g., sigmoid) P(y =1 |X1 x2) —
’ e 4 e
H=W'X 7=WIf(H) | |
oC To improve the model's weights, we
Lo oC ho owl, iteratively compute V,C(7,y) and
owly dC move the weights in that direction
ow(,)
oC n Chain rule of calculus:
ow!l, Cost C(n,) ify =f(uy, ...,u,) and u, = g(x),
oo o0x e~ Ju. ox
W12 aC l=1 !
2
awgl —
oC
2 h2 oWy,

13

Gradient descent with neural networks

Logistic ("softmax") output prediction:

nonlinear activation function enl

P — | =
(y |x17 x2) el + o'

To improve the model's weights, we
iteratively compute V,C(7,y) and
move the weights in that direction

Chain rule of calculus:
Cost C.y) ity = f(uy, ...,u,) and u; = g,(x),
s 0 S dy Oy,

then — = —
0x ; ou; ox

_| oC |owy] N oC owl,
de{}l dw?z aw(/)ll (e.g., sigmoid)
H = W'X n = WIf(H)
oC
Lo 4 ho ol
owl, oC
ow(, m)
oC
ow/,
I hl
oC
ow,
oC
T2
awgl —
oC
- h2 oWy,

13

Gradient descent with neural networks

oC |ow], [acC |owt, Logistic ("softmax") output prediction:
_l Wlllaw()l le aw(l)ll nonlinear activation function enl
(e.g., sigmoid) P(y — 1 |x1,x2) —
el 4+ ez
H=W'X 5 =W/¥H . |
oC To improve the model's weights, we
L0 oC ho ow, iteratively compute V,C(7,y) and
owly dC move the weights in that direction
ow(, 771)
oC Chain rule of calculus:
ow!l, Cost C(n,y) ify = f(ug,...,u) and u; = g.(x),
1 hy —<>(Y ay dy ou,
aC then — z
o 0x ou; ox
12 oC 772
()ng —
oC
L2 h2

n
oWy,

13

Gradient descent with neural networks

_|L9C [9wiy | 9C 9w Logistic ("softmax") output prediction:
“ow lowh ow'. |owh nonlinear activation function erh
ulj 01 uzj 01 (e.g., sigmoid) P(y — 1 |X1,X2) —
el 4+ ez

H = WhX n = WIf(H)
oC To improve the model's weights, we

L0 oC ho ow, iteratively compute V,C(7,y) and
owl dC move the weights in that direction
ow(, m W
aC Chain rule of calculus:
ow!l, Cost C(n,y) ify = f(uy, ..., u,) and u; = g,(x),
T h1 — <>) 0 . 0y ou.
aC then — = Z e]
oo ox = du;, ox
12 aC ,,72 l=1
awgl —
aC
- h2 owy,
This reuse of partially computed results (here, aCn and ;Cn) is what is called
Wi Wiz
BACKPROPAGATION*

(*An instance of dynamic programming. Technically, the stored outputs of intermediate computations are not
Z_C terms themselves, but gradients for node values, from which the weight gradients can be easily computed.) 13

Learning XOR with one hidden layer

Input Hidden Output

Epoch 0

class

Initialize weights randomly

In each learning epoch,
collect gradient from the 4
datapoints, and move weights —
"a bit" in direction of gradient ’ xt

Learning XOR with one hidden layer

Input Hidden Output

Epoch 0

class

Initialize weights randomly

In each learning epoch,
collect gradient from the 4
datapoints, and move weights —
"a bit" in direction of gradient ’ xt

Expressive power of multilayer network

15

Expressive power of multilayer network

universal function approximator (Hornik et al., 1989)

15

Expressive power of multilayer network

universal function approximator (Hornik et al., 1989)

x
e

M =1
x \
RN x
x
1

x

0 1
1 /,—f\ M =3
0 XN

-

1 x

0 1
1 /(’x—\\; 10
0 '/
1

0 1

15

Expressive power of multilayer network

universal function approximator (Hornik et al., 1989)

x M =1

x \ x

A%
» v
o -
—% s o > . »

1 P ® o H . . o -

0 1 . = o B . . @ °.9 < o . » B .

» - -
¢ 9 @ . a - B
1 e M =3 - .» " -
. Y e > . e

e ® * s b <

0 x\ % o : B o -
~_X - . ‘. . L2 . ’.— s A e - [
) % . 3 . - - . -
. P p s " o - » ® o > » - ©
0 1 ! o - - ! 7 ™
$'e"es " . "
- . . -

1 /(’x—\\; 10
0 '/‘
1

0 1

15

Expressive power of multilayer network

Layer L,

* Even just one hidden layer makes a neural network a
universal function approximator (Hornik et al., 1989)

x
e

T x

M =1
x \
ANLx
1

0 1
1 /,—*‘\ M =3
0 \
X
. x
1

S,

L -
R ——— " -
~ > » ¢ > . »

e Challenge: how to learn best function approximation?

15

Changing activation functions

16

Changing activation functions

e Using sigmoid as non-linear activation function f(H) has
problems when you add more network layers

16

Changing activation functions

e Using sigmoid as non-linear activation function f(H) has
problems when you add more network layers

sigmoid function derivative of sigmoid

1.0 1.0

derivative is zero at tails

0.6 0.6
0.4 0.4
0.2 0.2 ——/¥
0.0 0.0

-10 -5 0 5 10 -10 -5 5 0

16

Changing activation functions

e Using sigmoid as non-linear activation function f(H) has
problems when you add more network layers

sigmoid function derivative of sigmoid

1.0 1.0

derivative is zero at tails
0.6 0.6
0.4 0.4
0.2 0.2 ——_/¥
0.0 0.0
-10 5 0 5 1 10 5 0 5 1

e Thus other functions for f(H) have become more popular

16

Changing activation functions

e Using sigmoid as non-linear activation function f(H) has
problems when you add more network layers

sigmoid function

1.0

0.8

0.6

0.4

0.2

0.0

-10 5 0 5 10

derivative of sigmoid

1.0

0.8
derivative is zero at tails

-10 5 0 5 10

e Thus other functions for f(H) have become more popular

Activation Functions

Sigmoid

o(x) = 1;7 7
tanh

tanh(z)
ReLU |
max (0, x)

Leaky RelLU
max(0.1z, z)

Maxout

max(w{ z + by, w3 = + by)

ELU)
{x >0
ale*—1) z<0 -«) T 16

Changing activation functions

e Using sigmoid as non-linear activation function f(H) has
problems when you add more network layers

sigmoid function derivative of sigmoid

1.0 1.0

0.8 0.8 cedeneesniaaa .
derivative is zero at tails

0.6 0.6
0.4 0.4
0.2 0.2 —’k
0.0 0.0
-10 -5 0 5 10 -10 -5 0 5 10

e Thus other functions for f(H) have become more popular
Activation Functlons

S|gmo|d Leaky ReLU
o max(0.1z, x)

tanh Maxout
tanh max ula:+b1 112ac+b2

ReLU E
(02 I .

Online resources for learning more

Backpropagation:
Backprop as derivatives on computation graphs: http://colah.github.io/posts/2015-08-Backprop/

Lecture by Richard Socher (especially first ~18min) at https://www.youtube.com/watch?v=isPiE-
DBagM&list=PL3FW7Lu3i5Jsnh1rnUwq_TcyINr7EkRe6

Worked numerical example: https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

More generally, RNNs in natural language processing:

https://learning-modules.mit.edu/class/index.html?uuid=/course/6/fa17/6.864#info

http://web.stanford.edu/class/cs224n/
http://cs231n.github.io
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Goldberg, Y. (2017). Neural network methods for natural language processing. Synthesis Lectures on Human
Language Technologies, 10(1), 1-309. [Available for PDF download through MIT Libraries]

(And if you recommend another resource not listed here, let me know at rplevy@mit.edu!)

17

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/
https://learning-modules.mit.edu/class/index.html?uuid=/course/6/fa17/6.864#info
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
mailto:rplevy@mit.edu

