
Logistic regression and simple
multi-layer neural networks

Roger Levy
9.19: Computational Psycholinguistics

2 November 2023

Agenda for the day
•Review logistic regression (case study: binomial ordering

preferences)

• Limitations of linear classifiers like logistic regression

• Basic multi-layer neural networks & backpropagation

• Expressing and learning solutions to non-linear

classification problems

• Vanishing gradients and activation functions

2

Recap: binomial ordering preferences
• In each pair, which phrase sounds more natural?

3

Recap: binomial ordering preferences
• In each pair, which phrase sounds more natural?

3

pepper and salt salt and pepper

Recap: binomial ordering preferences
• In each pair, which phrase sounds more natural?

3

pepper and salt salt and pepper

hit and run run and hit

Recap: binomial ordering preferences
• In each pair, which phrase sounds more natural?

3

pepper and salt salt and pepper

hit and run run and hit

gold and silver silver and gold

Recap: binomial ordering preferences
• In each pair, which phrase sounds more natural?

3

pepper and salt salt and pepper

hit and run run and hit

gold and silver silver and gold

deer and trees trees and deer

Recap: binomial ordering preferences
• In each pair, which phrase sounds more natural?

3

pepper and salt salt and pepper

hit and run run and hit

gold and silver silver and gold

deer and trees trees and deer

drink and food food and drink

Recap: binomial ordering preferences
• In each pair, which phrase sounds more natural?

3

pepper and salt salt and pepper

hit and run run and hit

gold and silver silver and gold

deer and trees trees and deer

drink and food food and drink

skirts and sweaters sweaters and skirts

Recap: binomial ordering preferences
• In each pair, which phrase sounds more natural?

3

pepper and salt salt and pepper

hit and run run and hit

gold and silver silver and gold

deer and trees trees and deer

drink and food food and drink

skirts and sweaters sweaters and skirts

bishops and seamstresses seamstresses and bishops

Recap: binomial ordering preferences
• In each pair, which phrase sounds more natural?

3

pepper and salt salt and pepper

hit and run run and hit

gold and silver silver and gold

deer and trees trees and deer

drink and food food and drink

skirts and sweaters sweaters and skirts

bishops and seamstresses seamstresses and bishops

few and unfavorable unfavorable and few

Recap: binomial ordering preferences
• In each pair, which phrase sounds more natural?

3

pepper and salt salt and pepper

hit and run run and hit

gold and silver silver and gold

deer and trees trees and deer

drink and food food and drink

skirts and sweaters sweaters and skirts

bishops and seamstresses seamstresses and bishops

few and unfavorable unfavorable and few

cat and mouse mouse and cat

Recap: binomial ordering preferences
• In each pair, which phrase sounds more natural?

3

pepper and salt salt and pepper

hit and run run and hit

gold and silver silver and gold

deer and trees trees and deer

drink and food food and drink

skirts and sweaters sweaters and skirts

bishops and seamstresses seamstresses and bishops

few and unfavorable unfavorable and few

cat and mouse mouse and cat

quilting and sewing sewing and quilting

Recap: binomial ordering preferences
• In each pair, which phrase sounds more natural?

3

pepper and salt salt and pepper

hit and run run and hit

gold and silver silver and gold

deer and trees trees and deer

drink and food food and drink

skirts and sweaters sweaters and skirts

bishops and seamstresses seamstresses and bishops

few and unfavorable unfavorable and few

cat and mouse mouse and cat

quilting and sewing sewing and quilting

interest and principal principal and interest

Multiple, cross-cutting constraints

4

Constraint Example Strength

Iconic/scalar sequencing open and read 20

Perceptual markedness deer and trees 1.7

Formal markedness change and improve 1.4

Power food and drink 1

Avoid final stress confuse and disorient 0.5

Short≺Long cruel and unusual 0.4

Frequent≺Infrequent neatly and sweetly 0.3

• Logistic regression to capture effects on ordering preference:

Multiple, cross-cutting constraints

4

Constraint Example Strength

Iconic/scalar sequencing open and read 20

Perceptual markedness deer and trees 1.7

Formal markedness change and improve 1.4

Power food and drink 1

Avoid final stress confuse and disorient 0.5

Short≺Long cruel and unusual 0.4

Frequent≺Infrequent neatly and sweetly 0.3

P (“success”) =
e⌘

1 + e⌘

⌘ = �1X1 + �2X2 + · · ·+ �NXN

• Logistic regression to capture effects on ordering preference:

Multiple, cross-cutting constraints

4

Constraint Example Strength

Iconic/scalar sequencing open and read 20

Perceptual markedness deer and trees 1.7

Formal markedness change and improve 1.4

Power food and drink 1

Avoid final stress confuse and disorient 0.5

Short≺Long cruel and unusual 0.4

Frequent≺Infrequent neatly and sweetly 0.3

P (“success”) =
e⌘

1 + e⌘

⌘ = �1X1 + �2X2 + · · ·+ �NXN

{Xi}

• Logistic regression to capture effects on ordering preference:

Multiple, cross-cutting constraints

4

Constraint Example Strength

Iconic/scalar sequencing open and read 20

Perceptual markedness deer and trees 1.7

Formal markedness change and improve 1.4

Power food and drink 1

Avoid final stress confuse and disorient 0.5

Short≺Long cruel and unusual 0.4

Frequent≺Infrequent neatly and sweetly 0.3

P (“success”) =
e⌘

1 + e⌘

⌘ = �1X1 + �2X2 + · · ·+ �NXN

{Xi} {βi}

• Logistic regression to capture effects on ordering preference:

Multiple, cross-cutting constraints

4

Constraint Example Strength

Iconic/scalar sequencing open and read 20

Perceptual markedness deer and trees 1.7

Formal markedness change and improve 1.4

Power food and drink 1

Avoid final stress confuse and disorient 0.5

Short≺Long cruel and unusual 0.4

Frequent≺Infrequent neatly and sweetly 0.3

“goodness score”

P (“success”) =
e⌘

1 + e⌘

⌘ = �1X1 + �2X2 + · · ·+ �NXN

{Xi} {βi}

• Logistic regression to capture effects on ordering preference:

Multiple, cross-cutting constraints

4

Constraint Example Strength

Iconic/scalar sequencing open and read 20

Perceptual markedness deer and trees 1.7

Formal markedness change and improve 1.4

Power food and drink 1

Avoid final stress confuse and disorient 0.5

Short≺Long cruel and unusual 0.4

Frequent≺Infrequent neatly and sweetly 0.3

P (“success”) =
e⌘

1 + e⌘

⌘ = �1X1 + �2X2 + · · ·+ �NXN

“goodness score”

P (“success”) =
e⌘

1 + e⌘

⌘ = �1X1 + �2X2 + · · ·+ �NXN

{Xi} {βi}

• Logistic regression to capture effects on ordering preference:

Multiple, cross-cutting constraints

4

Constraint Example Strength

Iconic/scalar sequencing open and read 20

Perceptual markedness deer and trees 1.7

Formal markedness change and improve 1.4

Power food and drink 1

Avoid final stress confuse and disorient 0.5

Short≺Long cruel and unusual 0.4

Frequent≺Infrequent neatly and sweetly 0.3

P (“success”) =
e⌘

1 + e⌘

⌘ = �1X1 + �2X2 + · · ·+ �NXN
a.k.a. mean µ

“goodness score”

P (“success”) =
e⌘

1 + e⌘

⌘ = �1X1 + �2X2 + · · ·+ �NXN

{Xi} {βi}

• Logistic regression to capture effects on ordering preference:

Multiple, cross-cutting constraints

4

Constraint Example Strength

Iconic/scalar sequencing open and read 20

Perceptual markedness deer and trees 1.7

Formal markedness change and improve 1.4

Power food and drink 1

Avoid final stress confuse and disorient 0.5

Short≺Long cruel and unusual 0.4

Frequent≺Infrequent neatly and sweetly 0.3

P (“success”) =
e⌘

1 + e⌘

⌘ = �1X1 + �2X2 + · · ·+ �NXN
a.k.a. mean µ

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0
η

µ“goodness score”

P (“success”) =
e⌘

1 + e⌘

⌘ = �1X1 + �2X2 + · · ·+ �NXN

{Xi} {βi}

• Logistic regression to capture effects on ordering preference:

Multiple, cross-cutting constraints

4

Constraint Example Strength

Iconic/scalar sequencing open and read 20

Perceptual markedness deer and trees 1.7

Formal markedness change and improve 1.4

Power food and drink 1

Avoid final stress confuse and disorient 0.5

Short≺Long cruel and unusual 0.4

Frequent≺Infrequent neatly and sweetly 0.3

P (“success”) =
e⌘

1 + e⌘

⌘ = �1X1 + �2X2 + · · ·+ �NXN
a.k.a. mean µ

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0
η

µ“goodness score”

P (“success”) =
e⌘

1 + e⌘

⌘ = �1X1 + �2X2 + · · ·+ �NXN

{Xi} {βi}

Logistic (sigmoid)
activation function

A two-constraint example

5

A two-constraint example
• Constraints: word length (# syllables) and word frequency

5

A two-constraint example
• Constraints: word length (# syllables) and word frequency

5

⌘ = �SylXSyl + �FreqXFreq

P (A and B|{A,B}) = e⌘

1 + e⌘

A two-constraint example
• Constraints: word length (# syllables) and word frequency

5

⌘ = �SylXSyl + �FreqXFreq

P (A and B|{A,B}) = e⌘

1 + e⌘
P (“success”) =

e⌘

1 + e⌘

⌘ = �1X1 + �2X2 + · · ·+ �NXN

A two-constraint example
• Constraints: word length (# syllables) and word frequency

5

⌘ = �SylXSyl + �FreqXFreq

P (A and B|{A,B}) = e⌘

1 + e⌘
P (“success”) =

e⌘

1 + e⌘

⌘ = �1X1 + �2X2 + · · ·+ �NXN

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0
η

µ

Logistic (sigmoid)
activation function

A two-constraint example
• Constraints: word length (# syllables) and word frequency

5

⌘ = �SylXSyl + �FreqXFreq

P (A and B|{A,B}) = e⌘

1 + e⌘
P (“success”) =

e⌘

1 + e⌘

⌘ = �1X1 + �2X2 + · · ·+ �NXNArbitrarily define:

"success"↔︎alphabetical ordering

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0
η

µ

Logistic (sigmoid)
activation function

A two-constraint example
• Constraints: word length (# syllables) and word frequency

5

Short≺Long
?

XSyl Freq≺Infreq
?

XFreq

calm and relaxed ✔︎ 1 ✔︎ 1
big and thick n/a 0 ✔︎ 1
down and out n/a 0 ❌ -1

cruel and unusual ✔︎ 1 ❌ -1

anger and spite ❌ -1 ✔︎ 1

crochet and knit ❌ -1 ❌ -1

⌘ = �SylXSyl + �FreqXFreq

P (A and B|{A,B}) = e⌘

1 + e⌘
P (“success”) =

e⌘

1 + e⌘

⌘ = �1X1 + �2X2 + · · ·+ �NXNArbitrarily define:

"success"↔︎alphabetical ordering

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0
η

µ

Logistic (sigmoid)
activation function

A two-constraint example
• Constraints: word length (# syllables) and word frequency

5

Short≺Long
?

XSyl Freq≺Infreq
?

XFreq

calm and relaxed ✔︎ 1 ✔︎ 1
big and thick n/a 0 ✔︎ 1
down and out n/a 0 ❌ -1

cruel and unusual ✔︎ 1 ❌ -1

anger and spite ❌ -1 ✔︎ 1

crochet and knit ❌ -1 ❌ -1

⌘ = �SylXSyl + �FreqXFreq

P (A and B|{A,B}) = e⌘

1 + e⌘
P (“success”) =

e⌘

1 + e⌘

⌘ = �1X1 + �2X2 + · · ·+ �NXNArbitrarily define:

"success"↔︎alphabetical ordering

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0
η

µ

Logistic (sigmoid)
activation function

A two-constraint example
• Constraints: word length (# syllables) and word frequency

5

Short≺Long
?

XSyl Freq≺Infreq
?

XFreq

calm and relaxed ✔︎ 1 ✔︎ 1
big and thick n/a 0 ✔︎ 1
down and out n/a 0 ❌ -1

cruel and unusual ✔︎ 1 ❌ -1

anger and spite ❌ -1 ✔︎ 1

crochet and knit ❌ -1 ❌ -1

⌘ = �SylXSyl + �FreqXFreq

P (A and B|{A,B}) = e⌘

1 + e⌘
P (“success”) =

e⌘

1 + e⌘

⌘ = �1X1 + �2X2 + · · ·+ �NXNArbitrarily define:

"success"↔︎alphabetical ordering

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0
η

µ

Logistic (sigmoid)
activation function

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0
η

µ

Learning constraint weights

6

Short≺Long? XSyl Freq≺Infreq
?

XFreq

calm and relaxed ✔︎ 1 ✔︎ 1
big and thick n/a 0 ✔︎ 1
down and out n/a 0 ❌ -1

cruel and unusual ✔︎ 1 ❌ -1
anger and spite ❌ -1 ✔︎ 1

crochet and knit ❌ -1 ❌ -1
people and soils ❌ -1 ✔︎ 1

surprised and dubious ✔︎ 1 ✔︎ 1
abused and neglected ✔︎ 1 ❌ -1
lurched and stumbled ✔︎ 1 ❌ -1

⌘ = �SylXSyl + �FreqXFreq

P (A and B|{A,B}) = e⌘

1 + e⌘
P (“success”) =

e⌘

1 + e⌘

⌘ = �1X1 + �2X2 + · · ·+ �NXN

Logistic (sigmoid)
activation function

...

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0
η

µ

Learning constraint weights

6

Short≺Long? XSyl Freq≺Infreq
?

XFreq

calm and relaxed ✔︎ 1 ✔︎ 1
big and thick n/a 0 ✔︎ 1
down and out n/a 0 ❌ -1

cruel and unusual ✔︎ 1 ❌ -1
anger and spite ❌ -1 ✔︎ 1

crochet and knit ❌ -1 ❌ -1
people and soils ❌ -1 ✔︎ 1

surprised and dubious ✔︎ 1 ✔︎ 1
abused and neglected ✔︎ 1 ❌ -1
lurched and stumbled ✔︎ 1 ❌ -1

⌘ = �SylXSyl + �FreqXFreq

P (A and B|{A,B}) = e⌘

1 + e⌘
P (“success”) =

e⌘

1 + e⌘

⌘ = �1X1 + �2X2 + · · ·+ �NXN

Logistic (sigmoid)
activation function

...

Goal: Estimate good values from data

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0
η

µ

Learning constraint weights

6

Short≺Long? XSyl Freq≺Infreq
?

XFreq

calm and relaxed ✔︎ 1 ✔︎ 1
big and thick n/a 0 ✔︎ 1
down and out n/a 0 ❌ -1

cruel and unusual ✔︎ 1 ❌ -1
anger and spite ❌ -1 ✔︎ 1

crochet and knit ❌ -1 ❌ -1
people and soils ❌ -1 ✔︎ 1

surprised and dubious ✔︎ 1 ✔︎ 1
abused and neglected ✔︎ 1 ❌ -1
lurched and stumbled ✔︎ 1 ❌ -1

⌘ = �SylXSyl + �FreqXFreq

P (A and B|{A,B}) = e⌘

1 + e⌘
P (“success”) =

e⌘

1 + e⌘

⌘ = �1X1 + �2X2 + · · ·+ �NXN

Logistic (sigmoid)
activation function

...

Goal: Estimate good values from data

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0
η

µ

Learning constraint weights

6

Short≺Long? XSyl Freq≺Infreq
?

XFreq

calm and relaxed ✔︎ 1 ✔︎ 1
big and thick n/a 0 ✔︎ 1
down and out n/a 0 ❌ -1

cruel and unusual ✔︎ 1 ❌ -1
anger and spite ❌ -1 ✔︎ 1

crochet and knit ❌ -1 ❌ -1
people and soils ❌ -1 ✔︎ 1

surprised and dubious ✔︎ 1 ✔︎ 1
abused and neglected ✔︎ 1 ❌ -1
lurched and stumbled ✔︎ 1 ❌ -1

⌘ = �SylXSyl + �FreqXFreq

P (A and B|{A,B}) = e⌘

1 + e⌘
P (“success”) =

e⌘

1 + e⌘

⌘ = �1X1 + �2X2 + · · ·+ �NXN

Logistic (sigmoid)
activation function

...

Goal: Estimate good values from data

Then, e.g. find maximum-likelihood estimates ⟨ ̂βSyl, ̂βFreq⟩

Maximum of the likelihood surface

7

−0.5

0.0

0.5

1.0

1.5

−0.5 0.0 0.5 1.0 1.5
βSyl

β F
re
q

Maximum of the likelihood surface

7

−0.5

0.0

0.5

1.0

1.5

−0.5 0.0 0.5 1.0 1.5
βSyl

β F
re
q

For logistic regression, likelihood
surface is convex — relatively
easy to find optimum

Maximum of the likelihood surface

7

−0.5

0.0

0.5

1.0

1.5

−0.5 0.0 0.5 1.0 1.5
βSyl

β F
re
q

For logistic regression, likelihood
surface is convex — relatively
easy to find optimum

Crucial notion: gradient, the
“derivative in all directions” on a
multidimensional surface

Maximum of the likelihood surface

7

−0.5

0.0

0.5

1.0

1.5

−0.5 0.0 0.5 1.0 1.5
βSyl

β F
re
q

For logistic regression, likelihood
surface is convex — relatively
easy to find optimum

Crucial notion: gradient, the
“derivative in all directions” on a
multidimensional surface

Maximum of the likelihood surface

7

−0.5

0.0

0.5

1.0

1.5

−0.5 0.0 0.5 1.0 1.5
βSyl

β F
re
q

For logistic regression, likelihood
surface is convex — relatively
easy to find optimum

Crucial notion: gradient, the
“derivative in all directions” on a
multidimensional surface

Maximum of the likelihood surface

7

−0.5

0.0

0.5

1.0

1.5

−0.5 0.0 0.5 1.0 1.5
βSyl

β F
re
q

For logistic regression, likelihood
surface is convex — relatively
easy to find optimum

Crucial notion: gradient, the
“derivative in all directions” on a
multidimensional surface

r�Lik(Data; �)

Maximum of the likelihood surface

7

−0.5

0.0

0.5

1.0

1.5

−0.5 0.0 0.5 1.0 1.5
βSyl

β F
re
q

For logistic regression, likelihood
surface is convex — relatively
easy to find optimum

Crucial notion: gradient, the
“derivative in all directions” on a
multidimensional surface

r�Lik(Data; �)

✓
@ Lik(Data; �)

@�1
,
@ Lik(Data; �)

@�2

◆

Maximum of the likelihood surface

7

−0.5

0.0

0.5

1.0

1.5

−0.5 0.0 0.5 1.0 1.5
βSyl

β F
re
q

For logistic regression, likelihood
surface is convex — relatively
easy to find optimum

Crucial notion: gradient, the
“derivative in all directions” on a
multidimensional surface

r�Lik(Data; �)

✓
@ Lik(Data; �)

@�1
,
@ Lik(Data; �)

@�2

◆

Maximum of the likelihood surface

7

−0.5

0.0

0.5

1.0

1.5

−0.5 0.0 0.5 1.0 1.5
βSyl

β F
re
q

hb�Syl, b�Freqi = h0.48, 0.40i

For logistic regression, likelihood
surface is convex — relatively
easy to find optimum

Crucial notion: gradient, the
“derivative in all directions” on a
multidimensional surface

r�Lik(Data; �)

✓
@ Lik(Data; �)

@�1
,
@ Lik(Data; �)

@�2

◆

Limitations of logistic regression
• Logistic regression defines a hyperplane boundary

separating from P("success" |X) > 0.5 P("success" |X) < 0.5

8

Limitations of logistic regression
• Logistic regression defines a hyperplane boundary

separating from P("success" |X) > 0.5 P("success" |X) < 0.5

8

hb�Syl, b�Freqi = h0.48, 0.40i

Limitations of logistic regression
• Logistic regression defines a hyperplane boundary

separating from P("success" |X) > 0.5 P("success" |X) < 0.5

8

hb�Syl, b�Freqi = h0.48, 0.40i
⌘ = 0.48XSyl + 0.4XFreq

P (“success”) =
e⌘

1 + e⌘

Limitations of logistic regression
• Logistic regression defines a hyperplane boundary

separating from P("success" |X) > 0.5 P("success" |X) < 0.5

8

hb�Syl, b�Freqi = h0.48, 0.40i

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0
η

µLogistic (sigmoid)
activation function

⌘ = 0.48XSyl + 0.4XFreq

P (“success”) =
e⌘

1 + e⌘

Limitations of logistic regression
• Logistic regression defines a hyperplane boundary

separating from P("success" |X) > 0.5 P("success" |X) < 0.5

8

hb�Syl, b�Freqi = h0.48, 0.40i

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0
η

µLogistic (sigmoid)
activation function

⌘ = 0.48XSyl + 0.4XFreq

P (“success”) =
e⌘

1 + e⌘

0 = 0.48XSyl + 0.4XFreq

XFreq = �0.48

0.4
XSyl

Limitations of logistic regression
• Logistic regression defines a hyperplane boundary

separating from P("success" |X) > 0.5 P("success" |X) < 0.5

8

hb�Syl, b�Freqi = h0.48, 0.40i

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0
η

µLogistic (sigmoid)
activation function

⌘ = 0.48XSyl + 0.4XFreq

P (“success”) =
e⌘

1 + e⌘

0 = 0.48XSyl + 0.4XFreq

XFreq = �0.48

0.4
XSyl

0 = 0.48XSyl + 0.4XFreq

XFreq = �0.48

0.4
XSyl

Limitations of logistic regression
• Logistic regression defines a hyperplane boundary

separating from P("success" |X) > 0.5 P("success" |X) < 0.5

8

●●

●●

calm and relaxed

carefully and calmly
cruel and unusual

crochet and knit

−1

0

1

−1 0 1
Syl

Fr
eq

hb�Syl, b�Freqi = h0.48, 0.40i

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0
η

µLogistic (sigmoid)
activation function

⌘ = 0.48XSyl + 0.4XFreq

P (“success”) =
e⌘

1 + e⌘

0 = 0.48XSyl + 0.4XFreq

XFreq = �0.48

0.4
XSyl

0 = 0.48XSyl + 0.4XFreq

XFreq = �0.48

0.4
XSyl

Problems that aren't linearly separable

9

Problems that aren't linearly separable

9

• But many prediction problems aren't linearly separable

Problems that aren't linearly separable

9

XOR
problem

x1 x2 Class
0 0 1
0 1 0
1 0 0
1 1 1

• But many prediction problems aren't linearly separable

Problems that aren't linearly separable

9

●

●

●

●

XOR
problem

x1 x2 Class
0 0 1
0 1 0
1 0 0
1 1 1 x1

x2

• But many prediction problems aren't linearly separable

Problems that aren't linearly separable

9

●

●

●

●

XOR
problem

x1 x2 Class
0 0 1
0 1 0
1 0 0
1 1 1

More generally, we want flexibly-shaped class boundaries:

x1

x2

• But many prediction problems aren't linearly separable

Logistic regression as a “neuron”

10

Biological neuron

Logistic regression as a “neuron”

10

Biological neuron Artificial neuron

x1

x2

x3

+1

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0
η

µ

, or μ a

Logistic regression as a “neuron”

10

Biological neuron

⌘ =
X

i

�iXi µ =
e⌘

1 + e⌘

Artificial neuron

x1

x2

x3

+1

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0
η

µ

, or μ a

Logistic regression as a “neuron”

10

Biological neuron

⌘ =
X

i

�iXi µ =
e⌘

1 + e⌘

z = Wx+ b a = f(z)

Artificial neuron

x1

x2

x3

+1

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0
η

µ

, or μ a

Neurons are organized in networks!

11

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

A simple single-hidden-layer neural network

12

y

wh
01

wh
02

wh
11

wh
12

wh
21

wh
22

wη
01

wη
11

wη
21

wη
02

wη
12

wη
22

Predict: is class 1 or class 2?y

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

A simple single-hidden-layer neural network

12

y

wh
01

wh
02

wh
11

wh
12

wh
21

wh
22

wη
01

wη
11

wη
21

wη
02

wη
12

wη
22

Predict: is class 1 or class 2?y

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

A simple single-hidden-layer neural network

12

y

wh
01

wh
02

wh
11

wh
12

wh
21

wh
22

wη
01

wη
11

wη
21

wη
02

wη
12

wη
22

H = WhX

Predict: is class 1 or class 2?y

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

A simple single-hidden-layer neural network

12

y

wη
01

wη
11

wη
21

wη
02

wη
12

wη
22

H = WhX

Predict: is class 1 or class 2?y

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

A simple single-hidden-layer neural network

12

y

wη
01

wη
11

wη
21

wη
02

wη
12

wη
22

H = WhX

Predict: is class 1 or class 2?y

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

A simple single-hidden-layer neural network

12

y

wη
01

wη
11

wη
21

wη
02

wη
12

wη
22

H = WhX η = Wηf (H)

Predict: is class 1 or class 2?y

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

A simple single-hidden-layer neural network

12

y

wη
01

wη
11

wη
21

wη
02

wη
12

wη
22

H = WhX η = Wηf (H)

nonlinear activation function
(e.g., sigmoid)

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0
η

µ

Predict: is class 1 or class 2?y

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

A simple single-hidden-layer neural network

12

y

H = WhX η = Wηf (H)

nonlinear activation function
(e.g., sigmoid)

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0
η

µ

Predict: is class 1 or class 2?y

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

A simple single-hidden-layer neural network

12

y

H = WhX η = Wηf (H)

nonlinear activation function
(e.g., sigmoid)

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0
η

µ

Predict: is class 1 or class 2?y

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

A simple single-hidden-layer neural network

12

y

Logistic ("softmax") output prediction:

P(y = 1 |x1, x2) =
eη1

eη1 + eη2

H = WhX η = Wηf (H)

nonlinear activation function
(e.g., sigmoid)

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0
η

µ

Predict: is class 1 or class 2?y

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

A simple single-hidden-layer neural network

12

y

Logistic ("softmax") output prediction:

P(y = 1 |x1, x2) =
eη1

eη1 + eη2

H = WhX η = Wηf (H)

nonlinear activation function
(e.g., sigmoid)

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0
η

µ

Predict: is class 1 or class 2?y

P(y |X) = softmax(η)

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

A simple single-hidden-layer neural network

12

y

Logistic ("softmax") output prediction:

P(y = 1 |x1, x2) =
eη1

eη1 + eη2

H = WhX η = Wηf (H)

nonlinear activation function
(e.g., sigmoid)

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0
η

µ

Predict: is class 1 or class 2?y

P(y |X) = softmax(η)

P(y |X) = softmax(Wη f(WhX))

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

Gradient descent with neural networks

13

y
Cost C(η, y)

Logistic ("softmax") output prediction:

P(y = 1 |x1, x2) =
eη1

eη1 + eη2

H = WhX η = Wηf (H)

nonlinear activation function
(e.g., sigmoid)

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

Gradient descent with neural networks

13

y
Cost C(η, y)

To improve the model's weights, we
iteratively compute and
move the weights in that direction

∇wC(η, y)

Logistic ("softmax") output prediction:

P(y = 1 |x1, x2) =
eη1

eη1 + eη2

H = WhX η = Wηf (H)

nonlinear activation function
(e.g., sigmoid)

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

Gradient descent with neural networks

13

y
Cost C(η, y)

To improve the model's weights, we
iteratively compute and
move the weights in that direction

∇wC(η, y)

Chain rule of calculus:

if and ,

then

y = f (u1, …, un) ui = gi(x)
∂y
∂x

=
n

∑
i=1

∂y
∂ui

∂ui

∂x

Logistic ("softmax") output prediction:

P(y = 1 |x1, x2) =
eη1

eη1 + eη2

H = WhX η = Wηf (H)

nonlinear activation function
(e.g., sigmoid)

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

Gradient descent with neural networks

13

y
Cost C(η, y)

To improve the model's weights, we
iteratively compute and
move the weights in that direction

∇wC(η, y)

Chain rule of calculus:

if and ,

then

y = f (u1, …, un) ui = gi(x)
∂y
∂x

=
n

∑
i=1

∂y
∂ui

∂ui

∂x

∂C
∂wη

01

Logistic ("softmax") output prediction:

P(y = 1 |x1, x2) =
eη1

eη1 + eη2

H = WhX η = Wηf (H)

nonlinear activation function
(e.g., sigmoid)

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

Gradient descent with neural networks

13

y
Cost C(η, y)

To improve the model's weights, we
iteratively compute and
move the weights in that direction

∇wC(η, y)

Chain rule of calculus:

if and ,

then

y = f (u1, …, un) ui = gi(x)
∂y
∂x

=
n

∑
i=1

∂y
∂ui

∂ui

∂x

∂C
∂wη

01
∂C

∂wη
02

Logistic ("softmax") output prediction:

P(y = 1 |x1, x2) =
eη1

eη1 + eη2

H = WhX η = Wηf (H)

nonlinear activation function
(e.g., sigmoid)

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

Gradient descent with neural networks

13

y
Cost C(η, y)

To improve the model's weights, we
iteratively compute and
move the weights in that direction

∇wC(η, y)

Chain rule of calculus:

if and ,

then

y = f (u1, …, un) ui = gi(x)
∂y
∂x

=
n

∑
i=1

∂y
∂ui

∂ui

∂x

∂C
∂wη

01
∂C

∂wη
02

∂C
∂wη

11

Logistic ("softmax") output prediction:

P(y = 1 |x1, x2) =
eη1

eη1 + eη2

H = WhX η = Wηf (H)

nonlinear activation function
(e.g., sigmoid)

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

Gradient descent with neural networks

13

y
Cost C(η, y)

To improve the model's weights, we
iteratively compute and
move the weights in that direction

∇wC(η, y)

Chain rule of calculus:

if and ,

then

y = f (u1, …, un) ui = gi(x)
∂y
∂x

=
n

∑
i=1

∂y
∂ui

∂ui

∂x

∂C
∂wη

01
∂C

∂wη
02

∂C
∂wη

11

∂C
∂wη

12

Logistic ("softmax") output prediction:

P(y = 1 |x1, x2) =
eη1

eη1 + eη2

H = WhX η = Wηf (H)

nonlinear activation function
(e.g., sigmoid)

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

Gradient descent with neural networks

13

y
Cost C(η, y)

To improve the model's weights, we
iteratively compute and
move the weights in that direction

∇wC(η, y)

Chain rule of calculus:

if and ,

then

y = f (u1, …, un) ui = gi(x)
∂y
∂x

=
n

∑
i=1

∂y
∂ui

∂ui

∂x

∂C
∂wη

01
∂C

∂wη
02

∂C
∂wη

11

∂C
∂wη

12 ∂C
∂wη

21

Logistic ("softmax") output prediction:

P(y = 1 |x1, x2) =
eη1

eη1 + eη2

H = WhX η = Wηf (H)

nonlinear activation function
(e.g., sigmoid)

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

Gradient descent with neural networks

13

y
Cost C(η, y)

To improve the model's weights, we
iteratively compute and
move the weights in that direction

∇wC(η, y)

Chain rule of calculus:

if and ,

then

y = f (u1, …, un) ui = gi(x)
∂y
∂x

=
n

∑
i=1

∂y
∂ui

∂ui

∂x

∂C
∂wη

01
∂C

∂wη
02

∂C
∂wη

11

∂C
∂wη

12 ∂C
∂wη

21

∂C
∂wη

22

Logistic ("softmax") output prediction:

P(y = 1 |x1, x2) =
eη1

eη1 + eη2

H = WhX η = Wηf (H)

nonlinear activation function
(e.g., sigmoid)

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

Gradient descent with neural networks

13

y
Cost C(η, y)

To improve the model's weights, we
iteratively compute and
move the weights in that direction

∇wC(η, y)

Chain rule of calculus:

if and ,

then

y = f (u1, …, un) ui = gi(x)
∂y
∂x

=
n

∑
i=1

∂y
∂ui

∂ui

∂x

∂C
∂wη

01
∂C

∂wη
02

∂C
∂wη

11

∂C
∂wη

12 ∂C
∂wη

21

∂C
∂wη

22

Logistic ("softmax") output prediction:

P(y = 1 |x1, x2) =
eη1

eη1 + eη2

H = WhX η = Wηf (H)

nonlinear activation function
(e.g., sigmoid)

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

Gradient descent with neural networks

13

y
Cost C(η, y)

To improve the model's weights, we
iteratively compute and
move the weights in that direction

∇wC(η, y)

Chain rule of calculus:

if and ,

then

y = f (u1, …, un) ui = gi(x)
∂y
∂x

=
n

∑
i=1

∂y
∂ui

∂ui

∂x

∂C
∂wη

01
∂C

∂wη
02

∂C
∂wη

11

∂C
∂wη

12 ∂C
∂wη

21

∂C
∂wη

22

Logistic ("softmax") output prediction:

P(y = 1 |x1, x2) =
eη1

eη1 + eη2

∂C
∂wh

01

H = WhX η = Wηf (H)

nonlinear activation function
(e.g., sigmoid)

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

Gradient descent with neural networks

13

y
Cost C(η, y)

To improve the model's weights, we
iteratively compute and
move the weights in that direction

∇wC(η, y)

Chain rule of calculus:

if and ,

then

y = f (u1, …, un) ui = gi(x)
∂y
∂x

=
n

∑
i=1

∂y
∂ui

∂ui

∂x

∂C
∂wη

01
∂C

∂wη
02

∂C
∂wη

11

∂C
∂wη

12 ∂C
∂wη

21

∂C
∂wη

22

Logistic ("softmax") output prediction:

P(y = 1 |x1, x2) =
eη1

eη1 + eη2

=
∂C

∂wη
11

∂wη
11

∂wh
01

+
∂C

∂wη
12

∂wη
12

∂wh
01

∂C
∂wh

01

H = WhX η = Wηf (H)

nonlinear activation function
(e.g., sigmoid)

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

Gradient descent with neural networks

13

y
Cost C(η, y)

To improve the model's weights, we
iteratively compute and
move the weights in that direction

∇wC(η, y)

Chain rule of calculus:

if and ,

then

y = f (u1, …, un) ui = gi(x)
∂y
∂x

=
n

∑
i=1

∂y
∂ui

∂ui

∂x

∂C
∂wη

01
∂C

∂wη
02

∂C
∂wη

11

∂C
∂wη

12 ∂C
∂wη

21

∂C
∂wη

22

Logistic ("softmax") output prediction:

P(y = 1 |x1, x2) =
eη1

eη1 + eη2

=
∂C

∂wη
11

∂wη
11

∂wh
01

+
∂C

∂wη
12

∂wη
12

∂wh
01

∂C
∂wh

01

H = WhX η = Wηf (H)

nonlinear activation function
(e.g., sigmoid)

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

Gradient descent with neural networks

13

y
Cost C(η, y)

To improve the model's weights, we
iteratively compute and
move the weights in that direction

∇wC(η, y)

Chain rule of calculus:

if and ,

then

y = f (u1, …, un) ui = gi(x)
∂y
∂x

=
n

∑
i=1

∂y
∂ui

∂ui

∂x

∂C
∂wη

01
∂C

∂wη
02

∂C
∂wη

11

∂C
∂wη

12 ∂C
∂wη

21

∂C
∂wη

22

Logistic ("softmax") output prediction:

P(y = 1 |x1, x2) =
eη1

eη1 + eη2

=
∂C

∂wη
11

∂wη
11

∂wh
01

+
∂C

∂wη
12

∂wη
12

∂wh
01

∂C
∂wh

01

H = WhX η = Wηf (H)

nonlinear activation function
(e.g., sigmoid)

x0

x1

x2

Input

h0

h1

h2

Hidden

⌘1

⌘2

Output

Gradient descent with neural networks

13

y
Cost C(η, y)

To improve the model's weights, we
iteratively compute and
move the weights in that direction

∇wC(η, y)

Chain rule of calculus:

if and ,

then

y = f (u1, …, un) ui = gi(x)
∂y
∂x

=
n

∑
i=1

∂y
∂ui

∂ui

∂x

∂C
∂wη

01
∂C

∂wη
02

∂C
∂wη

11

∂C
∂wη

12 ∂C
∂wη

21

∂C
∂wη

22

Logistic ("softmax") output prediction:

P(y = 1 |x1, x2) =
eη1

eη1 + eη2

=
∂C

∂wη
11

∂wη
11

∂wh
01

+
∂C

∂wη
12

∂wη
12

∂wh
01

∂C
∂wh

01

This reuse of partially computed results (here, and) is what is called

BACKPROPAGATION*

∂C
∂wη

11

∂C
∂wη

12

(*An instance of dynamic programming. Technically, the stored outputs of intermediate computations are not
 terms themselves, but gradients for node values, from which the weight gradients can be easily computed.)∂C

∂ w

H = WhX η = Wηf (H)

nonlinear activation function
(e.g., sigmoid)

Learning XOR with one hidden layer

14

x0

x1

x2

Input

h0

h1

h2

Hidden

y1

y2

Output

In each learning epoch,
collect gradient from the 4
datapoints, and move weights
"a bit" in direction of gradient

Initialize weights randomly

Learning XOR with one hidden layer

14

x0

x1

x2

Input

h0

h1

h2

Hidden

y1

y2

Output

In each learning epoch,
collect gradient from the 4
datapoints, and move weights
"a bit" in direction of gradient

Initialize weights randomly

Expressive power of multilayer network

15

Predict:

y g(x1, . . . , xn) = y

Expressive power of multilayer network

• Even just one hidden layer makes a neural network a
universal function approximator (Hornik et al., 1989)

15

Predict:

y g(x1, . . . , xn) = y

Expressive power of multilayer network

• Even just one hidden layer makes a neural network a
universal function approximator (Hornik et al., 1989)

15

Predict:

y g(x1, . . . , xn) = y

Expressive power of multilayer network

• Even just one hidden layer makes a neural network a
universal function approximator (Hornik et al., 1989)

15

Predict:

y g(x1, . . . , xn) = y

Expressive power of multilayer network

• Even just one hidden layer makes a neural network a
universal function approximator (Hornik et al., 1989)

•Challenge: how to learn best function approximation?
15

Predict:

y g(x1, . . . , xn) = y

Changing activation functions

16

Changing activation functions
•Using sigmoid as non-linear activation function has

problems when you add more network layers
f(H)

16

Changing activation functions
•Using sigmoid as non-linear activation function has

problems when you add more network layers
f(H)

16

Changing activation functions
•Using sigmoid as non-linear activation function has

problems when you add more network layers
f(H)

• Thus other functions for have become more popularf(H)

16

Changing activation functions
•Using sigmoid as non-linear activation function has

problems when you add more network layers
f(H)

• Thus other functions for have become more popularf(H)

16

Changing activation functions
•Using sigmoid as non-linear activation function has

problems when you add more network layers
f(H)

• Thus other functions for have become more popularf(H)

16

Online resources for learning more
Backpropagation:

Backprop as derivatives on computation graphs: http://colah.github.io/posts/2015-08-Backprop/

Lecture by Richard Socher (especially first ~18min) at https://www.youtube.com/watch?v=isPiE-
DBagM&list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6

Worked numerical example: https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

More generally, RNNs in natural language processing:

https://learning-modules.mit.edu/class/index.html?uuid=/course/6/fa17/6.864#info

http://web.stanford.edu/class/cs224n/

http://cs231n.github.io

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Goldberg, Y. (2017). Neural network methods for natural language processing. Synthesis Lectures on Human
Language Technologies, 10(1), 1-309. [Available for PDF download through MIT Libraries]

(And if you recommend another resource not listed here, let me know at rplevy@mit.edu!)

17

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/
https://learning-modules.mit.edu/class/index.html?uuid=/course/6/fa17/6.864#info
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
mailto:rplevy@mit.edu

