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Agenda for the day
•Review logistic regression (case study: binomial ordering 

preferences)

• Limitations of linear classifiers like logistic regression

• Basic multi-layer neural networks & backpropagation

• Expressing and learning solutions to non-linear 

classification problems

• Vanishing gradients and activation functions
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Multiple, cross-cutting constraints
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Constraint Example Strength
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Goal: Estimate good values from data

Then, e.g. find maximum-likelihood estimates ⟨ ̂βSyl, ̂βFreq⟩
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Expressive power of multilayer network

• Even just one hidden layer makes a neural network a 
universal function approximator (Hornik et al., 1989)

•Challenge: how to learn best function approximation?
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Online resources for learning more
Backpropagation:

Backprop as derivatives on computation graphs: http://colah.github.io/posts/2015-08-Backprop/


Lecture by Richard Socher (especially first ~18min) at https://www.youtube.com/watch?v=isPiE-
DBagM&list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6


Worked numerical example: https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/


More generally, RNNs in natural language processing:

https://learning-modules.mit.edu/class/index.html?uuid=/course/6/fa17/6.864#info


http://web.stanford.edu/class/cs224n/


http://cs231n.github.io


http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Goldberg, Y. (2017). Neural network methods for natural language processing. Synthesis Lectures on Human 
Language Technologies, 10(1), 1-309.  [Available for PDF download through MIT Libraries]


(And if you recommend another resource not listed here, let me know at rplevy@mit.edu!)
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