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Agenda for the day

* Review logistic regression (case study: binomial ordering
preferences)

e Limitations of linear classifiers like logistic regression
e Basic multi-layer neural networks & backpropagation

* Expressing and learning solutions to non-linear
classification problems

* VVanishing gradients and activation functions
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More generally, we want flexibly-shaped class boundaries:
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Neurons are organized

n networks

BULLETIN OF
MATHEMATICAL BIOPHYSICS
VOLUME 5, 1943

A LOGICAL CALCULUS OF THE
IDEAS IMMANENT IN NERVOUS ACTIVITY

WARREN S. MCCULLOCH AND WALTER PITTS

FroM THE UNIVERSITY OF ILLINOIS, COLLEGE OF MEDICINE,
DEPARTMENT OF PSYCHIATRY AT THE ILLINOIS NEUROPSYCHIATRIC INSTITUTE,
AND THE UNIVERSITY OF CHICAGO

Because of the “all-or-none” character of nervous activity, neural
events and the relations among them can be treated by means of propo-
sitional logic. It is found that the behavior of every net can be described
in these terms, with the addition of more complicated logical means for
nets containing circles; and that for any logical expression satisfying
certain conditions, one can find a net behaving in the fashion it describes.
It is shown that many particular choices among possible neurophysiologi-
cal assumptions are equivalent, in the sense that for every net behav-
ing under one assumption, there exists another net which behaves un-
der the other and gives the same results, although perhaps not in the
same time. Various applications of the calculus are discussed.

Ficure 1
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Gradient descent with neural networks
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Gradient descent with neural networks
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Logistic ("softmax") output prediction:

nonlinear activation function enl
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Gradient descent with neural networks

oC |ow], [ acC |owt, Logistic ("softmax") output prediction:
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(e.g., sigmoid) P(y — 1 |x1,x2) —
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Gradient descent with neural networks

_|L9C [9wiy | 9C 9w Logistic ("softmax") output prediction:
“ow lowh ow'. |owh nonlinear activation function erh
ulj 01 uzj 01 (e.g., sigmoid) P(y — 1 |X1,X2) —
el 4+ ez

H = WhX n = WIf(H)
oC To improve the model's weights, we

L0 oC ho ow, iteratively compute V,C(7,y) and
owl dC move the weights in that direction
ow(, m W
aC Chain rule of calculus:
ow!l, Cost C(n,y) ify = f(uy, ..., u,) and u; = g,(x),
T h1 — <> ) 0 . 0y ou.
aC then — = Z e ]
oo ox = du;, ox
12 aC ,,72 l=1
awgl —
aC
- h2 owy,
This reuse of partially computed results (here, aCn and ;Cn ) is what is called
Wi Wiz
BACKPROPAGATION*

(*An instance of dynamic programming. Technically, the stored outputs of intermediate computations are not
Z_C terms themselves, but gradients for node values, from which the weight gradients can be easily computed.) 13



Learning XOR with one hidden layer

Input Hidden Output
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datapoints, and move weights —
"a bit" in direction of gradient ’ xt
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universal function approximator (Hornik et al., 1989)
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Expressive power of multilayer network

universal function approximator (Hornik et al., 1989)
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Expressive power of multilayer network

Layer L,

* Even just one hidden layer makes a neural network a
universal function approximator (Hornik et al., 1989)
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e Challenge: how to learn best function approximation?
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Changing activation functions

e Using sigmoid as non-linear activation function f(H) has
problems when you add more network layers

16



Changing activation functions

e Using sigmoid as non-linear activation function f(H) has
problems when you add more network layers

sigmoid function derivative of sigmoid

1.0 1.0

derivative is zero at tails

0.6 0.6
0.4 0.4
0.2 0.2 ——/¥
0.0 0.0

-10 -5 0 5 10 -10 -5 5 0

16



Changing activation functions

e Using sigmoid as non-linear activation function f(H) has
problems when you add more network layers

sigmoid function derivative of sigmoid

1.0 1.0

derivative is zero at tails
0.6 0.6
0.4 0.4
0.2 0.2 ——_/¥
0.0 0.0
-10 5 0 5 1 10 5 0 5 1

e Thus other functions for f(H) have become more popular

16



Changing activation functions

e Using sigmoid as non-linear activation function f(H) has
problems when you add more network layers

sigmoid function

1.0

0.8
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0.4

0.2

0.0

-10 5 0 5 10

derivative of sigmoid

1.0

0.8
derivative is zero at tails
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e Thus other functions for f(H) have become more popular

Activation Functions

Sigmoid

o(x) = 1;7 7
tanh

tanh(z)
ReLU |
max (0, x)

Leaky RelLU
max(0.1z, z)

Maxout

max(w{ z + by, w3 = + by)

ELU )
{x >0
ale*—1) z<0 -« ) T 16



Changing activation functions

e Using sigmoid as non-linear activation function f(H) has
problems when you add more network layers

sigmoid function derivative of sigmoid

1.0 1.0

0.8 0.8 cedeneesniaaa .
derivative is zero at tails

0.6 0.6
0.4 0.4
0.2 0.2 —’k
0.0 0.0
-10 -5 0 5 10 -10 -5 0 5 10

e Thus other functions for f(H) have become more popular
Activation Functlons

S|gmo|d Leaky ReLU
o max(0.1z, x)

tanh Maxout
tanh max ula:+b1 112ac+b2

ReLU E
(02 I .




Online resources for learning more

Backpropagation:
Backprop as derivatives on computation graphs: http://colah.github.io/posts/2015-08-Backprop/

Lecture by Richard Socher (especially first ~18min) at https://www.youtube.com/watch?v=isPiE-
DBagM&list=PL3FW7Lu3i5Jsnh1rnUwq_TcyINr7EkRe6

Worked numerical example: https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

More generally, RNNs in natural language processing:

https://learning-modules.mit.edu/class/index.html?uuid=/course/6/fa17/6.864#info

http://web.stanford.edu/class/cs224n/
http://cs231n.github.io
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Goldberg, Y. (2017). Neural network methods for natural language processing. Synthesis Lectures on Human
Language Technologies, 10(1), 1-309. [Available for PDF download through MIT Libraries]

(And if you recommend another resource not listed here, let me know at rplevy@mit.edu!)
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