Logistic regression and simple multi-layer neural networks

Roger Levy
9.19: Computational Psycholinguistics
2 November 2023

Agenda for the day

- Review logistic regression (case study: binomial ordering preferences)
- Limitations of linear classifiers like logistic regression
- Basic multi-layer neural networks \& backpropagation
- Expressing and learning solutions to non-linear classification problems
- Vanishing gradients and activation functions

Recap: binomial ordering preferences

- In each pair, which phrase sounds more natural?

```
    pepper and salt
        hit and run
        gold and silver
        deer and trees
        drink and food
        skirts and sweaters
        bishops and seamstresses
        few and unfavorable
        cat and mouse
quilting and sewing
interest and principal
pepper and salt
hit and run
gold and silver
deer and trees
drink and food
skirts and sweaters
bishops and seamstresses
few and unfavorable
cat and mouse
quilting and sewing
interest and principal
```

salt and pepper
run and hit
silver and gold
trees and deer
food and drink
sweaters and skirts
seamstresses and bishops unfavorable and few
mouse and cat
sewing and quilting
principal and interest

Multiple, cross-cutting constraints

$\left\{X_{i}\right\}\left[\begin{array}{ccc}\text { Constraint } & \text { Example } & \text { Strength } \\ \hline \text { Iconic/scalar sequencing } & \text { open and read } & \mathbf{2 0} \\ \text { Perceptual markedness } & \text { deer and trees } & \mathbf{1 . 7} \\ \text { Formal markedness } & \text { change and improve } & \mathbf{1 . 4} \\ \text { Power } & \text { food and drink } & \mathbf{1} \\ \text { Avoid final stress } & \text { confuse and disorient } & \mathbf{0 . 5} \\ \text { Short<Long } & \text { cruel and unusual } & \mathbf{0 . 4} \\ \text { Frequent<Infrequent } & \text { neatly and sweetly } & \mathbf{0 . 3}\end{array}\right]\left\{\beta_{i}\right\}$

- Logistic regression to capture effects on ordering preference:
$\eta=\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+\beta_{N} X_{N}$
$P($ "success" $)=\frac{e^{\eta}}{\frac{1+e^{\eta}}{\text { a.k.a. mean } \mu}}$

η

A two-constraint example

- Constraints: word length (\# syllables) and word frequency

$$
\begin{aligned}
\eta & =\beta_{\text {Syl }} X_{\text {Syl }}+\beta_{\text {Freq }} X_{\text {Freq }} \\
P(\text { "success" }) & =\frac{e^{\eta}}{1+e^{\eta}}
\end{aligned}
$$

Arbitrarily define:
"success"↔alphabetical ordering

Freq<Infreq
calm and relaxed big and thick down and out
cruel and unusual anger and spite crochet and knit

Short<Long

$$
\begin{gathered}
n \\
n / a \\
n / a
\end{gathered}
$$

Learning constraint weights

Goal: Estimate good values from data

 Short<Long? Xsyl Freq<Infreq $X_{\text {Freq }}$

calm and relaxed
big and thick
down and out
cruel and unusual
anger and spite
crochet and knit

V	1
n / a	0
n / a	0
ν	1
X	-1
X	-1

Then, e.g. find maximum-likelihood estimates $\left\langle\hat{\beta}_{\text {Syl }}, \hat{\beta}_{\text {Freq }}\right\rangle$

Maximum of the likelihood surface

For logistic regression, likelihood surface is convex - relatively easy to find optimum

范

Crucial notion: gradient, the "derivative in all directions" on a multidimensional surface

Limitations of logistic regression

- Logistic regression defines a hyperplane boundary separating $P($ "success" $\mid X)>0.5$ from $P($ "success" $\mid X)<0.5$ $\left\langle\widehat{\beta}_{S y l}, \widehat{\beta}_{\text {Freq }}\right\rangle=\langle 0.48,0.40\rangle$

$$
\eta=0.48 X_{\text {Syl }}+0.4 X_{\text {Freq }}
$$

$P($ "success" $)=\frac{e^{\eta}}{1+e^{\eta}}$

Logistic (sigmoid)
activation function

$0=0.48 X_{\text {Syl }}+0.4 X_{\text {Freq }}$
$X_{\text {Freq }}=-\frac{0.48}{0.4} X_{\text {Syl }}$

Problems that aren't linearly separable

- But many prediction problems aren't linearly separable

| | x_{1} | x_{2} | Class | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 0 | 0 | 1 | | \bullet | |
| XOR | 0 | 1 | 0 | x_{2} | | |
| problem | 1 | 0 | 0 | | | |
| | 1 | 1 | 1 | | x_{1} | |

More generally, we want flexibly-shaped class boundaries:

Logistic regression as a "neuron"

Biological neuron

Context

Artificial neuron

Bias unit corresponds to intercept term
Feedforward

$$
\begin{array}{rl}
\eta=\sum_{i} \beta_{i} X_{i} & \mu=\frac{e^{\eta}}{1+e^{\eta}} \\
\downarrow=W x+b & a=f(z)
\end{array}
$$

Neurons are organized in networks!

BULLETIN OF MATHEMATICAL BIOPHYSICS VOLUME 5, 1943

A LOGICAL CALCULUS OF THE

IDEAS IMMANENT IN NERVOUS ACTIVITY

Warren S. McCulloch and Walter Pitts

From the University of illinois, College of Medicine, Department of Psychiatry at The Illinois neuropsychiatric Institute, and The University of Chicago

Because of the "all-or-none" character of nervous activity, neural events and the relations among them can be treated by means of propositional logic. It is found that the behavior of every net can be described in these terms, with the addition of more complicated logical means for nets containing circles; and that for any logical expression satisfying certain conditions, one can find a net behaving in the fashion it describes. It is shown that many particular choices among possible neurophysiological assumptions are equivalent, in the sense that for every net behaving under one assumption, there exists another net which behaves under the other and gives the same results, although perhaps not in the same time. Various applications of the calculus are discussed.
a

C

9

b

d

i

A simple single-hidden-layer neural network

Input Hidden Output

Predict: is y class 1 or class 2 ?
$\mathbf{H}=\mathbf{W}^{\mathbf{h}} \mathbf{X} \quad \eta=\mathbf{W}^{\eta} f(\mathbf{H})$
nonlinear activation function
(e.g., sigmoid)

Gradient descent with neural networks

This reuse of partially computed results (here, $\frac{\partial C}{\partial w_{11}^{n}}$ and $\frac{\partial C}{\partial w_{12}^{n}}$) is what is called BACKPROPAGATION*

Learning XOR with one hidden layer

Expressive power of multilayer network

$$
g\left(x_{1}, \ldots, x_{n}\right)=y
$$

- Even just one hidden layer makes a neural network a universal function approximator (Hornik et al., 1989)

- Challenge: how to learn best function approximation?

Changing activation functions

- Using sigmoid as non-linear activation function $f(\mathbf{H})$ has problems when you add more network layers

- Thus other functions for $f(\mathbf{H})$ have become more popular

Online resources for learning more

Backpropagation:

Backprop as derivatives on computation graphs: http://colah.github.io/posts/2015-08-Backprop/
Lecture by Richard Socher (especially first $\sim 18 \mathrm{~min}$) at https://www.youtube.com/watch?v=isPiE-
DBagM\&list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6
Worked numerical example: https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

More generally, RNNs in natural language processing:

https://learning-modules.mit.edu/class/index.html?uuid=/course/6/fa17/6.864\#info
http://web.stanford.edu/class/cs224n/
http://cs231n.github.io
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Goldberg, Y. (2017). Neural network methods for natural language processing. Synthesis Lectures on Human Language Technologies, 10(1), 1-309. [Available for PDF download through MIT Libraries]
(And if you recommend another resource not listed here, let me know at rplevy@mit.edu!)

