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Today’s content

I Conditional Independence

I Bayes Nets (a.k.a. directed acyclic graphical models, DAGs)



(Conditional) Independence

Events A and B are said to be Conditionally Independent given information
C if

P(A,B|C ) = P(A|C )P(B|C )

Conditional independence of A and B given C is often expressed as

A ⊥ B|C



Directed graphical models

I A lot of the interesting joint probability distributions in the study of
language involve conditional independencies among the variables

I So next we’ll introduce you to a general framework for specifying
conditional independencies among collections of random variables

I It won’t allow us to express all possible independencies that may hold,
but it goes a long way

I And I hope that you’ll agree that the framework is intuitive too!



A non-linguistic example, redux

I Imagine a factory that produces three types of coins in equal volumes:
I Fair coins;
I 2-headed coins;
I 2-tailed coins.

I Generative process:
I The factory produces a coin of type X and sends it to you;
I You receive the coin and flip it twice, with H(eads)/T(ails) outcomes Y1

and Y2

I Receiving a coin from the factory and flipping it twice is sampling (or
taking a sample) from the joint distribution P(X ,Y1,Y2)



This generative process is a Bayes Net

The directed acyclic graphical model (DAG), or Bayes net:

X

Y1 Y2

I Semantics of a Bayes net: the joint distribution can be expressed as the
product of the conditional distributions of each variable given only its
parents

I In this DAG, P(X ,Y1,Y2) = P(X )P(Y1|X )P(Y2|X )

X P(X )
Fair 1

3
2-H 1

3
2-T 1

3

X P(Y1 = H|X ) P(Y1 = T|X )
Fair 1

2
1
2

2-H 1 0
2-T 0 1

X P(Y2 = H|X ) P(Y2 = T|X )
Fair 1

2
1
2

2-H 1 0
2-T 0 1



Conditional independence in Bayes nets

X P(X )
Fair 1

3
2-H 1

3
2-T 1

3

X P(Y1 = H|X ) P(Y1 = T|X )
Fair 1

2
1
2

2-H 1 0
2-T 0 1

X P(Y2 = H|X ) P(Y2 = T|X )
Fair 1

2
1
2

2-H 1 0
2-T 0 1

Question:

I Conditioned on not having any further information, are the two coin flips
Y1 and Y2 in this generative process independent?

I That is, is it the case that Y1 ⊥ Y2|{}?
I No!

I P(Y2 = H) = 1
2 (you can see this by symmetry)

I But P(Y2 = H|Y1 = H) =

Coin was fair︷ ︸︸ ︷
1

3
× 1

2
+

Coin was 2-H︷ ︸︸ ︷
2

3
× 1 = 5

6



Formally assessing conditional independence in Bayes Nets

I The comprehensive criterion for assessing conditional independence is
known as D-separation.

I A path between two disjoint node sets A and B is a sequence of edges
connecting some node in A with some node in B

I Any node on a given path has converging arrows if two edges on the
path connect to it and point to it.

I A node on the path has non-converging arrows if two edges on the path
connect to it, but at least one does not point to it.

I A third disjoint node set C d-separates A and B if for every path
between A and B, either:

1. there is some node N on the path whose arrows do not converge and
which is in C ; or

2. there is some node N on the path with converging arrows, and neither N
nor any of its descendants is in C .



Major types of d-separation

A node set C d-separates A and B if for every path between A and B, either:

1. there is some node N on the path whose arrows do not converge and which is in C ; or

2. there is some node N on the path with converging arrows, and neither N nor any of its
descendants is in C .

Common-
cause d-
separation
(from knowing
Z )

Intervening
d-separation
(from knowing
Y )

Explaining
away: knowing
Z prevents
d-separation

D-separation
in the absence
of knowledge
of Z

X Y

Z

A B

C
X

Y

Z

A

B

C

X Y

Z

A B

C

X Y

Z

A B

C = {}

(Shaded node=in C )



D-separation and conditional independence

A node set C d-separates A and B if for every path between A and B, either:

1. there is some node N on the path whose arrows do not converge and which is in C ; or

2. there is some node N on the path with converging arrows, and neither N nor any of
its descendants is in C .

I If C d-separates A and B, then

A⊥B|C

I Caution: the converse is not the case: A⊥B|C does not necessarily
imply that the joint distribution on all the random variables in A∪B ∪C
can be represented with a Bayes Net in which C d-separates A and B.
I Example: let X1,X2,Y1,Y2 each be 0/1 random variable, and let the

joint distribution reflect the constraint that Y1 = (X1 == X2) and
Y2 = xor(X1,X2). This gives us Y1⊥Y2|{X1,X2}, but you won’t be able
to write a Bayes net involving these four variables such that {X1,X2}
d-separates Y1 and Y2.



Conditional independencies not expressable in a Bayes net

I Example: let X1,X2,Y1,Y2 each be binary 0/1 random variables, in the
following arrangement on an undirected graph:

X1 X2

Y1 Y2

f1(X1,X2,Y1,Y2) = I (X1 6= X2)
f2(X1,X2,Y1,Y2) = I (X1 6= Y1)
f3(X1,X2,Y1,Y2) = I (X2 6= Y2)
f4(X1,X2,Y1,Y2) = I (Y1 6= Y2)

I Suppose the joint distribution is determined entirely by adjacent nodes “liking”
to have the same value. Formally, for example:

P(X1,X2,Y1,Y2) ∝
4∏

i=1

(
1

2

)fi (X1,X2,Y1,Y2)

(Most probable outcomes, each with prob. 0.195: either all 0s, or all 1s)

I In this model, both the following conditional independencies hold:

X1 ⊥ Y2|{X2,Y1} X2 ⊥ Y1|{X1,Y2}

I But this set of conditional independencies cannot be expressed in a Bayes Net.



Conditional independencies not expressable in a Bayes net

X1 X2

Y1 Y2

f1(X1,X2,Y1,Y2) = I (X1 6= X2)
f2(X1,X2,Y1,Y2) = I (X1 6= Y1)
f3(X1,X2,Y1,Y2) = I (X2 6= Y2)
f4(X1,X2,Y1,Y2) = I (Y1 6= Y2)

I This example is an instance of an Ising model, the prototypical case of a
Markov random field, a model class that can be represented as
undirected graphs

I We won’t look at these further, but you can read about them in books
and papers about graphical models (e.g., (Bishop, 2006, Section 8.3)



Back to our example

X

Y1 Y2

X

Y1 Y2

I Without looking at the coin before flipping it, the outcome Y1 of the
first flip gives me information about the type of coin, and affects my
beliefs about the outcome of Y2

I But if I look at the coin before flipping it, Y1 and Y2 are rendered
independent



An example of explaining away

I saw an exhibition about the, uh. . .

There are several causes of disfluency, including:

I An upcoming word is difficult to produce (e.g., low frequency, astrolabe)

I The speaker’s attention was distracted by something in the
non-linguistic environment

A reasonable graphical model:

W : hard
word?

A:
attention

distracted?

D:
disfluency?



An example of explaining away

W : hard
word?

A:
attention

distracted?

D:
disfluency?

I Without knowledge of D, there’s no reason to expect that W and A are
correlated

I But hearing a disfluency demands a cause

I Knowing that there was a distraction explains away the disfluency,
reducing the probability that the speaker was planning to utter a hard
word



An example of the disfluency model

W : hard
word?

A:
attention

distracted?

D:
disfluency?

I Let’s suppose that both hard words and
distractions are unusual, the latter more so

P(W = hard) = 0.25

P(A = distracted) = 0.15

I Hard words and distractions both induce
disfluencies; having both makes a disfluency
really likely

W A D=no disfluency D=disfluency
easy undistracted 0.99 0.01
easy distracted 0.7 0.3
hard undistracted 0.85 0.15
hard distracted 0.4 0.6



An example of the disfluency model

W : hard
word?

A:
attention

distracted?

D:
disfluency?

P(W = hard) = 0.25

P(A = distracted) = 0.15

W A D=no disfluency D=disfluency
easy undistracted 0.99 0.01
easy distracted 0.7 0.3
hard undistracted 0.85 0.15
hard distracted 0.4 0.6

I Suppose that we observe the speaker uttering a disfluency. What is
P(W = hard|D = disfluent)?

I Now suppose we also learn that her attention is distracted. What does
that do to our beliefs about W

I That is, what is P(W = hard|D = disfluent,A = distracted)?



An example of the disfluency model

Fortunately, there is automated machinery to “turn the Bayesian crank”:

P(W = hard) = 0.25

P(W = hard|D = disfluent) = 0.57

P(W = hard|D = disfluent,A = distracted) = 0.40

I Knowing that the speaker was distracted (A) decreased the probability
that the speaker was about to utter a hard word (W )—A explained D
away.

I A caveat: the type of relationship among A, W , and D will depend on
the values one finds in the probability table!

P(W )
P(A)
P(D|W ,A)



Summary thus far

Key points:

I Bayes’ Rule is a compelling framework for modeling inference under
uncertainty

I DAGs/Bayes Nets are a broad class of models for specifying joint
probability distributions with conditional independencies

I Classic Bayes Net references: Pearl (1988, 2000); Jordan (1998); Russell
and Norvig (2003, Chapter 14); Bishop (2006, Chapter 8).



An example of the disfluency model

P(W = hard|D = disfluent,A = distracted)

hard W =hard
easy W =easy
disfl D=disfluent
distr A=distracted
undistr A=undistracted

P(hard|disfl, distr) =
P(disfl|hard, distr)P(hard|distr)

P(disfl|distr)
(Bayes’ Rule)

=
P(disfl|hard, distr)P(hard)

P(disfl|distr)
(Independence from the DAG)

P(disfl|distr) =
∑
w′

P(disfl|W = w′)P(W = w′) (Marginalization)

= P(disfl|hard)P(hard) + P(disfl|easy)P(easy)

= 0.6× 0.25 + 0.3× 0.75

= 0.375

P(hard|disfl, distr) =
0.6× 0.25

0.375

= 0.4



An example of the disfluency model

P(W = hard|D = disfluent)

P(hard|disfl) =
P(disfl|hard)P(hard)

P(disfl)
(Bayes’ Rule)

P(disfl|hard) =
∑
a′

P(disfl|A = a′, hard)P(A = a′|hard)

= P(disfl|A = distr, hard)P(A = distr|hard) + P(disfl|undistr, hard)P(undistr|hard)

= 0.6× 0.15 + 0.15× 0.85

= 0.2175

P(disfl) =
∑
w′

P(disfl|W = w′)P(W = w′)

= P(disfl|hard)P(hard) + P(disfl|easy)P(easy)

P(disfl|easy) =
∑
a′

P(disfl|A = a′, easy)P(A = a′|easy)

= P(disfl|A = distr, easy)P(A = distr|easy) + P(disfl|undistr, easy)P(undistr|easy)

= 0.3× 0.15 + 0.01× 0.85

= 0.0535

P(disfl) = 0.2175× 0.25 + 0.0535× 0.75

= 0.0945

P(hard|disfl) =
0.2175× 0.25

0.0945

= 0.575396825396825
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