Bayes Nets
 9.19: Computational Psycholinguistics Fall 2023

Roger Levy

Massachusetts Institute of Technology
25 October 2023

Today's content

- Conditional Independence
- Bayes Nets (a.k.a. directed acyclic graphical models, DAGs)

(Conditional) Independence

Events A and B are said to be Conditionally Independent given information C if

$$
P(A, B \mid C)=P(A \mid C) P(B \mid C)
$$

Conditional independence of A and B given C is often expressed as

$$
A \perp B \mid C
$$

Directed graphical models

- A lot of the interesting joint probability distributions in the study of language involve conditional independencies among the variables
- So next we'll introduce you to a general framework for specifying conditional independencies among collections of random variables
- It won't allow us to express all possible independencies that may hold, but it goes a long way
- And I hope that you'll agree that the framework is intuitive too!

A non-linguistic example, redux

- Imagine a factory that produces three types of coins in equal volumes:
- Fair coins;
- 2-headed coins;
- 2-tailed coins.
- Generative process:
- The factory produces a coin of type X and sends it to you;
- You receive the coin and flip it twice, with $\mathrm{H}($ eads $) / \mathrm{T}$ (ails) outcomes Y_{1} and Y_{2}
- Receiving a coin from the factory and flipping it twice is sampling (or taking a sample) from the joint distribution $P\left(X, Y_{1}, Y_{2}\right)$

This generative process is a Bayes Net

The directed acyclic graphical model (DAG), or Bayes net:

- Semantics of a Bayes net: the joint distribution can be expressed as the product of the conditional distributions of each variable given only its parents
- In this DAG, $P\left(X, Y_{1}, Y_{2}\right)=P(X) P\left(Y_{1} \mid X\right) P\left(Y_{2} \mid X\right)$

X	$P(X)$	X	$P\left(Y_{1}=\mathrm{H} \mid X\right)$	$P\left(Y_{1}=\mathrm{T} \mid X\right)$	X	$P\left(Y_{2}=\mathrm{H} \mid X\right)$	$P\left(Y_{2}=\mathrm{T} \mid X\right)$
Fair	$\frac{1}{3}$	Fair	$\frac{1}{2}$	$\frac{1}{2}$	Fair	$\frac{1}{2}$	$\frac{1}{2}$
2-H	$\frac{1}{3}$	$2-\mathrm{H}$	1	0	$2-\mathrm{H}$	1	0
2-T	$\frac{1}{3}$	$2-\mathrm{T}$	0	1	$2-\mathrm{T}$	0	1

Conditional independence in Bayes nets

X	$P(X)$	X	$P\left(Y_{1}=\mathrm{H} \mid X\right)$	$P\left(Y_{1}=\mathrm{T} \mid X\right)$	X	$P\left(Y_{2}=\mathrm{H} \mid X\right)$	$P\left(Y_{2}=\mathrm{T} \mid X\right)$
Fair	$\frac{1}{3}$	Fair	$\frac{1}{2}$	$\frac{1}{2}$	Fair	$\frac{1}{2}$	$\frac{1}{2}$
2-H	$\frac{1}{3}$	$2-\mathrm{H}$	1	0	$2-\mathrm{H}$	1	0
$2-\mathrm{T}$	$\frac{1}{3}$	$2-\mathrm{T}$	0	1	$2-\mathrm{T}$	0	1

Question:

- Conditioned on not having any further information, are the two coin flips Y_{1} and Y_{2} in this generative process independent?
- That is, is it the case that $Y_{1} \perp Y_{2} \mid\{ \}$?
- No!
- $P\left(Y_{2}=H\right)=\frac{1}{2}$ (you can see this by symmetry)

Coin was fair Coin was $2-\mathrm{H}$

- But $P\left(Y_{2}=H \mid Y_{1}=H\right)=\overbrace{\frac{1}{3} \times \frac{1}{2}}+\overbrace{\frac{2}{3} \times 1}=\frac{5}{6}$

Formally assessing conditional independence in Bayes Nets

- The comprehensive criterion for assessing conditional independence is known as D-separation.
- A path between two disjoint node sets A and B is a sequence of edges connecting some node in A with some node in B
- Any node on a given path has converging arrows if two edges on the path connect to it and point to it.
- A node on the path has non-converging arrows if two edges on the path connect to it, but at least one does not point to it.
- A third disjoint node set C d-separates A and B if for every path between A and B, either:

1. there is some node N on the path whose arrows do not converge and which is in C; or
2. there is some node N on the path with converging arrows, and neither N nor any of its descendants is in C.

Major types of d-separation

A node set C d-separates A and B if for every path between A and B, either:

1. there is some node N on the path whose arrows do not converge and which is in C; or
2. there is some node N on the path with converging arrows, and neither N nor any of its descendants is in C.

Common-
cause
separation
(from knowing Z)

Intervening
d-separation
(from knowing
Y)
Explaining away: knowing
$Z \quad$ prevents
d-separation

D-separation in the absence of knowledge of Z

$($ Shaded node $=$ in $C)$

D-separation and conditional independence

A node set C d-separates A and B if for every path between A and B, either:

1. there is some node N on the path whose arrows do not converge and which is in C; or
2. there is some node N on the path with converging arrows, and neither N nor any of its descendants is in C.

- If C d-separates A and B, then

$$
A \perp B \mid C
$$

- Caution: the converse is not the case: $A \perp B \mid C$ does not necessarily imply that the joint distribution on all the random variables in $A \cup B \cup C$ can be represented with a Bayes Net in which C d-separates A and B.
- Example: let $X_{1}, X_{2}, Y_{1}, Y_{2}$ each be $0 / 1$ random variable, and let the joint distribution reflect the constraint that $Y_{1}=\left(X_{1}=X_{2}\right)$ and $Y_{2}=\operatorname{xor}\left(X_{1}, X_{2}\right)$. This gives us $Y_{1} \perp Y_{2} \mid\left\{X_{1}, X_{2}\right\}$, but you won't be able to write a Bayes net involving these four variables such that $\left\{X_{1}, X_{2}\right\}$ d-separates Y_{1} and Y_{2}.

Conditional independencies not expressable in a Bayes net

- Example: let $X_{1}, X_{2}, Y_{1}, Y_{2}$ each be binary $0 / 1$ random variables, in the following arrangement on an undirected graph:

$$
\begin{aligned}
f_{1}\left(X_{1}, X_{2}, Y_{1}, Y_{2}\right) & =\mathbf{I}\left(X_{1} \neq X_{2}\right) \\
f_{2}\left(X_{1}, X_{2}, Y_{1}, Y_{2}\right) & =\mathbf{I}\left(X_{1} \neq Y_{1}\right) \\
f_{3}\left(X_{1}, X_{2}, Y_{1}, Y_{2}\right) & =\mathbf{I}\left(X_{2} \neq Y_{2}\right) \\
f_{4}\left(X_{1}, X_{2}, Y_{1}, Y_{2}\right) & =\mathbf{I}\left(Y_{1} \neq Y_{2}\right)
\end{aligned}
$$

- Suppose the joint distribution is determined entirely by adjacent nodes "liking" to have the same value. Formally, for example:

$$
P\left(X_{1}, X_{2}, Y_{1}, Y_{2}\right) \propto \prod_{i=1}^{4}\left(\frac{1}{2}\right)^{f_{i}\left(X_{1}, X_{2}, Y_{1}, Y_{2}\right)}
$$

(Most probable outcomes, each with prob. 0.195: either all 0 s , or all 1 s)

- In this model, both the following conditional independencies hold:

$$
X_{1} \perp Y_{2}\left|\left\{X_{2}, Y_{1}\right\} \quad X_{2} \perp Y_{1}\right|\left\{X_{1}, Y_{2}\right\}
$$

- But this set of conditional independencies cannot be expressed in a Bayes Net.

Conditional independencies not expressable in a Bayes net

$$
\begin{aligned}
f_{1}\left(X_{1}, X_{2}, Y_{1}, Y_{2}\right) & =\mathbf{I}\left(X_{1} \neq X_{2}\right) \\
f_{2}\left(X_{1}, X_{2}, Y_{1}, Y_{2}\right) & =\mathbf{I}\left(X_{1} \neq Y_{1}\right) \\
f_{3}\left(X_{1}, X_{2}, Y_{1}, Y_{2}\right) & =\mathbf{I}\left(X_{2} \neq Y_{2}\right) \\
f_{4}\left(X_{1}, X_{2}, Y_{1}, Y_{2}\right) & =\mathbf{I}\left(Y_{1} \neq Y_{2}\right)
\end{aligned}
$$

- This example is an instance of an Ising model, the prototypical case of a Markov random field, a model class that can be represented as undirected graphs
- We won't look at these further, but you can read about them in books and papers about graphical models (e.g., (Bishop, 2006, Section 8.3)

Back to our example

- Without looking at the coin before flipping it, the outcome Y_{1} of the first flip gives me information about the type of coin, and affects my beliefs about the outcome of Y_{2}

- But if I look at the coin before flipping it, Y_{1} and Y_{2} are rendered independent

An example of explaining away

I saw an exhibition about the, uh...
There are several causes of disfluency, including:

- An upcoming word is difficult to produce (e.g., low frequency, astrolabe)
- The speaker's attention was distracted by something in the non-linguistic environment
A reasonable graphical model:

An example of explaining away

- Without knowledge of D, there's no reason to expect that W and A are correlated
- But hearing a disfluency demands a cause
- Knowing that there was a distraction explains away the disfluency, reducing the probability that the speaker was planning to utter a hard word

An example of the disfluency model

- Let's suppose that both hard words and distractions are unusual, the latter more so

$$
\begin{array}{r}
P(W=\text { hard })=0.25 \\
P(A=\text { distracted })=0.15
\end{array}
$$

- Hard words and distractions both induce disfluencies; having both makes a disfluency really likely

W	A	$D=$ no disfluency	$D=$ disfluency
easy	undistracted	0.99	0.01
easy	distracted	0.7	0.3
hard	undistracted	0.85	0.15
hard	distracted	0.4	0.6

An example of the disfluency model

$$
\begin{aligned}
P(W=\text { hard }) & =0.25 \\
P(A=\text { distracted }) & =0.15
\end{aligned}
$$

- Suppose that we observe the speaker uttering a disfluency. What is $P(W=$ hard $\mid D=$ disfluent $)$?
- Now suppose we also learn that her attention is distracted. What does that do to our beliefs about W
That is, what is $P(W=$ hard $\mid D=$ disfluent, $A=$ distracted $)$?

An example of the disfluency model

Fortunately, there is automated machinery to "turn the Bayesian crank":

$$
\begin{aligned}
P(W=\text { hard }) & =0.25 \\
P(W=\text { hard } \mid D=\text { disfluent }) & =0.57 \\
P(W=\operatorname{hard} \mid D=\text { disfluent }, A=\text { distracted }) & =0.40
\end{aligned}
$$

- Knowing that the speaker was distracted (A) decreased the probability that the speaker was about to utter a hard word $(W)-A$ explained D away.
- A caveat: the type of relationship among A, W, and D will depend on the values one finds in the probability table!

$$
\begin{aligned}
& P(W) \\
& P(A) \\
& P(D \mid W, A)
\end{aligned}
$$

Summary thus far

Key points:

- Bayes' Rule is a compelling framework for modeling inference under uncertainty
- DAGs/Bayes Nets are a broad class of models for specifying joint probability distributions with conditional independencies
- Classic Bayes Net references: Pearl (1988, 2000); Jordan (1998); Russell and Norvig (2003, Chapter 14); Bishop (2006, Chapter 8).

An example of the disfluency model

$P(W=$ hard $\mid D=$ disfluent, $A=$ distracted $)$	
hard	$W=$ hard
easy	$W=$ easy
disfl	$D=$ disfluent
distr	$A=$ distracted
undistr	$A=$ undistracted

$$
\begin{aligned}
P(\text { hard } \mid \text { disfl }, \text { distr }) & =\frac{P(\text { disf } \mid \text { hard }, \text { distr }) P(\text { hard } \mid \text { distr })}{P(\text { disf } \mid \text { distr })} \\
& =\frac{P(\text { disfl } \mid \text { hard }, \text { distr }) P(\text { hard })}{P(\text { disfl } \mid \text { distr })} \\
P(\text { disfl } \mid \text { distr }) & =\sum_{w^{\prime}} P\left(\text { disfl } \mid W=w^{\prime}\right) P\left(W=w^{\prime}\right) \\
& =P(\text { disf| } \mid \text { hard }) P(\text { hard })+P(\text { disfl } \mid \text { easy }) P(\text { easy }) \\
& =0.6 \times 0.25+0.3 \times 0.75 \\
& =0.375 \\
P(\text { hard } \mid \text { disfl }, \text { distr }) & =\frac{0.6 \times 0.25}{0.375} \\
& =0.4
\end{aligned}
$$

(Bayes' Rule)
(Independence from the DAG)
(Marginalization)

An example of the disfluency model

$P(W=$ hard $\mid D=$ disfluent $)$

$$
\begin{aligned}
P(\text { hard } \mid \text { disfl }) & =\frac{P(\text { disfl } \mid \text { hard }) P(\text { hard })}{P(\text { disfl })} \\
P(\text { disf } \mid \text { hard }) & =\sum_{a^{\prime}} P\left(\text { disff } \mid A=a^{\prime}, \text { hard }\right) P\left(A=a^{\prime} \mid \text { hard }\right) \\
& =P(\text { disff } \mid A=\text { distr, hard }) P(A=\text { distr } \mid \text { hard })+P(\text { disff } \mid \text { undistr, hard }) P(\text { undistr } \mid \text { hard }) \\
& =0.6 \times 0.15+0.15 \times 0.85 \\
& =0.2175 \\
P(\text { disfl }) & =\sum_{w^{\prime}} P\left(\text { disf| } \mid W=w^{\prime}\right) P\left(W=w^{\prime}\right) \\
& =P(\text { disf } \mid \text { hard }) P(\text { hard })+P(\text { disf| } \mid \text { easy }) P(\text { easy }) \\
P(\text { disfl } \mid \text { easy }) & =\sum_{a^{\prime}} P\left(\text { disff } \mid A=a^{\prime}, \text { easy }\right) P\left(A=a^{\prime} \mid \text { easy }\right) \\
& =P(\text { disff } \mid A=\text { distr, easy }) P(A=\text { distr } \mid \text { easy })+P(\text { disfl } \mid \text { undistr, easy }) P(\text { undistr|easy }) \\
& =0.3 \times 0.15+0.01 \times 0.85 \\
& =0.0535 \\
P(\text { disfl }) & =0.2175 \times 0.25+0.0535 \times 0.75 \\
& =0.0945 \\
P(\text { hard } \mid \text { disfl }) & =\frac{0.2175 \times 0.25}{0.0945} \\
& =0.575396825396825
\end{aligned}
$$

References I

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer. Jordan, M. I., editor (1998). Learning in Graphical Models. Cambridge, MA: MIT Press.
Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 2 edition.
Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge. Russell, S. and Norvig, P. (2003). Artificial Intelligence: a Modern Approach. Prentice Hall, second edition edition.

