Psycholinguistic methods, prediction in human language processing, and surprisal theory

Roger Levy
9.19: Computational Psycholinguistics
27 September 2023

Some psycholinguistic benchmarks

- What is our cognitive state at every moment of language understanding and language production?
- How do we manage uncertainty about the interpretation of past input, and about possible future input?
- What determines the difficulty of integrating a word into its context?
- What influences how we package our thoughts into utterances?

Psycholinguistic methodology

- Many workhorses of psycholinguistic experimentation involve behavioral measures
-What choices do people make in various types of languageproducing and language-comprehending situations?
- What do we interpret an utterance to mean in a context?
-What words do we choose to convey a meaning?
- And, how long do they take to make these choices?
- Offline measures
- rating sentences, completing sentences, ...
- Online measures
- tracking people's eye movements, having people read words aloud, reading under (implicit) time pressure...
- There are also non-behavioral, notably neural, methods for studying human language processing

Acceptability judgments

Acceptability judgments

- On a scale of 1 (worst) to 4 (best), how good does each of these sentences sound?

Acceptability judgments

- On a scale of 1 (worst) to 4 (best), how good does each of these sentences sound?
- There was him in the garden.

Acceptability judgments

- On a scale of 1 (worst) to 4 (best), how good does each of these sentences sound?
- There was him in the garden.
- She tried to leave.

Acceptability judgments

- On a scale of 1 (worst) to 4 (best), how good does each of these sentences sound?
- There was him in the garden.
- She tried to leave.
- She tried to left.

Acceptability judgments

- On a scale of 1 (worst) to 4 (best), how good does each of these sentences sound?
- There was him in the garden.
- She tried to leave.
- She tried to left.
- Danced extremely, Jerry frantically at the club.

Acceptability judgments

- On a scale of 1 (worst) to 4 (best), how good does each of these sentences sound?
- There was him in the garden.
- She tried to leave.
- She tried to left.
- Danced extremely, Jerry frantically at the club.
- Colorless green ideas sleep furiously.

Acceptability judgments

- On a scale of 1 (worst) to 4 (best), how good does each of these sentences sound?
- There was him in the garden.
- She tried to leave.
- She tried to left.
- Danced extremely, Jerry frantically at the club.
- Colorless green ideas sleep furiously.
- Furiously sleep ideas green colorless

Acceptability judgments

- On a scale of 1 (worst) to 4 (best), how good does each of these sentences sound?
- There was him in the garden.
- She tried to leave.
- She tried to left.

a minimal pair

- Danced extremely, Jerry frantically at the club.
- Colorless green ideas sleep furiously.
- Furiously sleep ideas green colorless

Acceptability judgments

- On a scale of 1 (worst) to 4 (best), how good does each of these sentences sound?
- There was him in the garden.
- She tried to leave.
- She tried to left.

a minimal pair

- Danced extremely, Jerry frantically at the club.
- Colorless green ideas sleep furiously.
- Furiously sleep ideas green colorless
- A simple but high-sensitivity experimental method!

Acceptability judgments

- On a scale of 1 (worst) to 4 (best), how good does each of these sentences sound?
- There was him in the garden.
- She tried to leave.
- She tried to left.

a minimal pair

- Danced extremely, Jerry frantically at the club.
- Colorless green ideas sleep furiously.
- Furiously sleep ideas green colorless
- A simple but high-sensitivity experimental method!
- Theoretically, most commonly used to get at the grammaticality status of a sentence

Acceptability judgments

- On a scale of 1 (worst) to 4 (best), how good does each of these sentences sound?
- There was him in the garden.
- She tried to leave.
- She tried to left.

a minimal pair

- Danced extremely, Jerry frantically at the club.
- Colorless green ideas sleep furiously.
- Furiously sleep ideas green colorless
- A simple but high-sensitivity experimental method!
- Theoretically, most commonly used to get at the grammaticality status of a sentence
- But, they are also generally understood to reflect other factors
(examples from Adger, 2003; ratings from Lau et al., 2017)

Incrementality, structure, and surprise

Incrementality, structure, and surprise

The

Incrementality, structure, and surprise

The woman

Incrementality, structure, and surprise

The woman brought

Incrementality, structure, and surprise

The woman brought the

Incrementality, structure, and surprise

The woman brought the sandwich

Incrementality, structure, and surprise

The woman brought the sandwich from

Incrementality, structure, and surprise

The woman brought the sandwich from the

Incrementality, structure, and surprise

The woman brought the sandwich from the kitchen

Incrementality, structure, and surprise

The woman brought the sandwich from the kitchen tripped.

Incrementality, structure, and surprise

Incrementality, structure, and surprise

The woman who was given the sandwich from the kitchen tripped.

Incrementality, structure, and surprise

The woman given the sandwich from the kitchen tripped.

Incrementality, structure, and surprise

The woman given

The woman given
the sandwich from the kitchen tripped.
the sandwich from the kitchen tripped.

Incrementality, structure, and surprise

The woman brought the sandwich from the kitchen tripped.

The woman given the sandwich from the kitchen tripped.

The woman given the sandwich from the kitchen tripped.

Incrementality, structure, and surprise

The woman brought the sandwich from the kitchen tripped.

The woman brought the sandwich from the kitchen tripped.

The woman given the sandwich from the kitchen tripped.
The woman given the sandwich from the kitchen tripped.

Incrementality, structure, and surprise

The woman brought the sandwich from the kitchen tripped.

The woman brought the sandwich from the kitchen tripped.

The woman given the sandwich from the kitchen tripped.
The woman given the sandwich from the kitchen tripped.

Simple past Past participle
bring brought brought
give gave given

Incrementality, structure, and surprise

The woman brought the sandwich from the kitchen tripped.

The woman brought the sandwich from the kitchen tripped.

The woman given the sandwich from the kitchen tripped.
The woman given the sandwich from the kitchen tripped.

\[

\]

Meaning can help us avoid surprise, too:

```
The evidence examined by the lawyer from the firm was unreliable.
```

Measuring human incremental processing state

Measuring human incremental processing state

- Eye movements in the visual world

Measuring human incremental processing state

- Eye movements in the visual world
- Word-by-word reading times

Measuring human incremental processing state

- Eye movements in the visual world
- Word-by-word reading times
- Self-paced reading

Measuring human incremental processing state

- Eye movements in the visual world
- Word-by-word reading times
- Self-paced reading
- Eye movements during natural reading

Measuring human incremental processing state

- Eye movements in the visual world
- Word-by-word reading times
- Self-paced reading
- Eye movements during natural reading
- Recordings of brain activity

Measuring human incremental processing state

- Eye movements in the visual world
- Word-by-word reading times
- Self-paced reading
- Eye movements during natural reading
- Recordings of brain activity
- Electrophysiological (EEG/ERP)

Measuring human incremental processing state

- Eye movements in the visual world
- Word-by-word reading times
- Self-paced reading
- Eye movements during natural reading
- Recordings of brain activity
- Electrophysiological (EEG/ERP)
- Magneto-encephalography (MEG)

Measuring human incremental processing state

- Eye movements in the visual world
- Word-by-word reading times
- Self-paced reading
- Eye movements during natural reading
- Recordings of brain activity
- Electrophysiological (EEG/ERP)
- Magneto-encephalography (MEG)
- Functional Magnetic Resonance Imaging (fMRI)

Measuring human incremental processing state

- Eye movements in the visual world
- Word-by-word reading times
- Self-paced reading
- Eye movements during natural reading
- Recordings of brain activity
- Electrophysiological (EEG/ERP)
- Magneto-encephalography (MEG)
- Functional Magnetic Resonance Imaging (fMRI)
- Electrocorticography (ECoG)

Measuring human incremental processing state

- Eye movements in the visual world
- Word-by-word reading times
- Self-paced reading

Behavioral

- Eye movements during natural reading
- Recordings of brain activity
- Electrophysiological (EEG/ERP)
- Magneto-encephalography (MEG)
- Functional Magnetic Resonance Imaging (fMRI)
- Electrocorticography (ECoG)

Measuring human incremental processing state

- Eye movements in the visual world
- Word-by-word reading times
- Self-paced reading

Behavioral

- Eye movements during natural reading
- Recordings of brain activity
- Electrophysiological (EEG/ERP)
- Magneto-encephalography (MEG)
- Functional Magnetic Resonance Imaging (fMRI)
- Electrocorticography (ECoG)

Eye movements in the visual world

Eye movements in the visual world

Eye movements in the visual world (slow-motion)

Eye movements in the visual world (slow-motion)

Eye movements in the visual world

Eye movements in the visual world

A visual world experiment

A visual world experiment

Instruction to experimental participant:

A visual world experiment

Instruction to experimental participant:

"Pick up the beaker"

Data from human eye movements

Time

Target = beaker

Cohort = beetle

Unrelated = carriage

Data from human eye movements

"Look at the cross."

Time

Target = beaker

Cohort = beetle
Unrelated = carriage

Data from human eye movements

"Look at the cross."

Time

Target = beaker

Cohort = beetle

Unrelated = carriage

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

Time

Target = beaker
Cohort = beetle
Unrelated = carriage

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

Time

Target = beaker

Cohort = beetle

Unrelated = carriage

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

Time

Target = beaker

Cohort = beetle

Unrelated = carriage

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

Time

Target = beaker

Cohort = beetle
Unrelated = carriage

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

Time

Target = beaker

Cohort = beetle

Unrelated = carriage

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

Time

Target = beaker
Cohort = beetle
Unrelated = carriage

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

Unrelated = carriage

Target = beaker

Cohort = beetle

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

Target = beaker
Cohort = beetle
Unrelated = carriage

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

Trial Number

Time

Target = beaker
Cohort = beetle
Unrelated = carriage

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

Target = beaker
Cohort = beetle
Unrelated = carriage

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

Target = beaker
Cohort = beetle
Unrelated = carriage

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

Target = beaker

Cohort = beetle

Unrelated = carriage

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

Target = beaker
Cohort = beetle
Unrelated = carriage

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

Cohort = beetle
Unrelated = carriage

Target = beaker

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

Target = beaker
Cohort = beetle
Unrelated = carriage

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

Target = beaker
Cohort = beetle
Unrelated = carriage

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

Target = beaker

Cohort = beetle
Unrelated = carriage

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

Target $=$ beaker

Cohort = beetle

Unrelated = carriage

Time

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

Target $=$ beaker

Cohort = beetle

Unrelated = carriage

Time

Data from human eye movements

"Look at the cross."
"Pick up the beaker."

Target $=$ beaker

Cohort = beetle

Unrelated = carriage

Time

Allopenna, Magnuson \& Tanenhaus (1998)

How do people read?

How do people read?

CNN wants to change its viewers' habits.

Eye movements in reading

Abstract

journals. Hardcopy journals are more easily browsed, more portable and, of course people are very much used to their format. Electronic journals save on paper and their format has improved considerably over the past few years, but there are stili problems over managing copyright restrictions and persuading people to use electronic instead of hardcopy journals. There is also the problem of portability. More and more journals are now being published in electronic format, although some publishers will only let you subscribe to an electronic journal provided you also subscribe to the hardcopy (more money for the same thing). Some electronic journals cosi over 100% more than their equivalent hardoopy. With all these factors in mind I have been discussing individual and shared-subscriptions with the Biochemistry Department, the RSL and Blackwell's. Whilst I feel that a move from hardcopy to electronic journals will be a very slow process in the ULP Library, electronic publishing is being carefully monitored and I would hope to introduce a few electronic texts into the Library alongside the journals which are already available for free over the Intemet.

(movie by Piers Cornelissen)

Eye movements in reading

Abstract

journals. Hardcopy journals are more easily browsed, more portable and, of course people are very much used to their format. Electronic journals save on paper and their format has improved considerably over the past few years, but there are stili problems over managing copyright restrictions and persuading people to use electronic instead of hardcopy journals. There is also the problem of portability. More and more journals are now being published in electronic format, although some publishers will only let you subscribe to an electronic journal provided you also subscribe to the hardcopy (more money for the same thing). Some electronic journals cosi over 100% more than their equivalent hardoopy. With all these factors in mind I have been discussing individual and shared-subscriptions with the Biochemistry Department, the RSL and Blackwell's. Whilst I feel that a move from hardcopy to electronic journals will be a very slow process in the ULP Library, electronic publishing is being carefully monitored and I would hope to introduce a few electronic texts into the Library alongside the journals which are already available for free over the Intemet.

(movie by Piers Cornelissen)

How do people read?

How do people read?

Fixations

How do people read?

Saccades

How do people read?

CdN wants to change its viewers' habits.

How do people read?

CNI mants to change its viewers' habits.

How do people read?

CNN wants to change its viewers' habits.

How do people read?

CNN wants to change

How do people read?

CNN wants to change it habits.

How do people read?

CNN wants to change its virs' habits.

How do people read?

CNN wants to change its riewer' habits.

How do people read?

CNN wants to change its riemers' habis.

How do people read?

CdN wants to change its viewers' habits.

How do people read?

CDN wants to change its viewers' habits. 225 ms

How do people read?

CNN wants to change its viewers' habits. 225 ms

How do people read?

CNN mants to change its viewers' habits. $225 \mathrm{~ms} \quad 30 \mathrm{~ms}$

How do people read?

CNN wants to change its viewers' habits.

What do you see during a fixation?

How do people read?

NN wants to change its
 Perceptual
 span

What do you see during a fixation?

How do people read?

CNN wants to change its viewers' habits.

What do you see during a saccade?

How do people read?

What do you see during a saccade?
Nothing

How do people read?

CNN wants to change itsviewers' habits.
 Forward
 Saccade

How do people read?

CNN wants to change itswers' habits.
 Forward
 Saccade

How do people read?

CNN wants to change its views' habits.
 Forward
 Saccade

How do people read?

CNN wants to change its xiewew' habits.
Backward
Saccade
(Regression)

How do people read?

Eye movement measures

- Skips (also skip rate / fixation probability)
- First fixation duration
- First pass duration (or Gaze duration)
- First pass regression rate
- Go-past duration
- Total fixation duration

Eye movement measures

CNN wants to change its viewers' $\frac{{ }_{3}}{5}$ habits.

- Skips (also skip rate / fixation probability)
- First fixation duration
- First pass duration (or Gaze duration)
- First pass regression rate
- Go-past duration
- Total fixation duration

Eye movement measures

CNN wants to change its $\underset{\beta_{7}}{\text { viewers' }}{ }_{5}$ habits. $_{8}$

- Skips (also skip rate / fixation probability)
- First fixation duration
- First pass duration (or Gaze duration)
- First pass regression rate
- Go-past duration
- Total fixation duration

Eye movement measures

- Skips (also skip rate / fixation probability)
- First fixation duration
- First pass duration (or Gaze duration)
- First pass regression rate
- Go-past duration
- Total fixation duration

Eye movement measures

CNN wants to $\underset{7}{ }$ ange its $\frac{\text { viewers' }}{5} \frac{6}{6}$ habits.

- Skips (also skip rate / fixation probability)
- First fixation duration
- First pass duration (or Gaze duration)
- First pass regression rate
- Go-past duration
- Total fixation duration

Eye movement measures

CNN wants to change its $\underset{\beta_{7}}{\text { viewers' }}{ }_{5}$ habits. $_{8}$

- Skips (also skip rate / fixation probability)
- First fixation duration
- First pass duration (or Gaze duration)
- First pass regression rate
- Go-past duration
- Total fixation duration
(slide courtesy Yevgeni Berzak)

Linguistic Expectations

- Linguistic expectations can be studied with eye tracking for reading.
- Reading times (across different eye movement measures) reflect how contextual predictability affects linguistic processing.

Generalizing incremental disambiguation

Generalizing incremental disambiguation

- Uncertainty in predictions about upcoming material

Generalizing incremental disambiguation

- Uncertainty in predictions about upcoming material

The old man stopped and stared at the

Generalizing incremental disambiguation

- Uncertainty in predictions about upcoming material

The old man stopped and stared at the statue?

Generalizing incremental disambiguation

- Uncertainty in predictions about upcoming material

The old man stopped and stared at the statue? dog?

Generalizing incremental disambiguation

- Uncertainty in predictions about upcoming material

The old man stopped and stared at the statue? dog? view?

Generalizing incremental disambiguation

- Uncertainty in predictions about upcoming material

The old man stopped and stared at the statue? dog? view? woman?

Generalizing incremental disambiguation

- Uncertainty in predictions about upcoming material

The old man stopped and stared at the statue? dog? view? woman?

The squirrel stored some nuts in the

Generalizing incremental disambiguation

- Uncertainty in predictions about upcoming material

The old man stopped and stared at the statue? dog? view? woman?

The squirrel stored some nuts in the tree

Generalizing incremental disambiguation

- Uncertainty in predictions about upcoming material

The old man stopped and stared at the statue? dog? view? woman?

The squirrel stored some nuts in the tree

- This is uncertainty about what has not yet been said

Generalizing incremental disambiguation

- Uncertainty in predictions about upcoming material

The old man stopped and stared at the statue? dog?
view? woman?
The squirrel stored some nuts in the tree

- This is uncertainty about what has not yet been said
- Reading-time (Ehrlich \& Rayner, 1981) and EEG (Kutas \& Hillyard, 1980, 1984) evidence shows this affects processing rapidly

Generalizing incremental disambiguation

- Uncertainty in predictions about upcoming material

The old man stopped and stared at the statue? dog?
view? woman?
The squirrel stored some nuts in the tree

- This is uncertainty about what has not yet been said
- Reading-time (Ehrlich \& Rayner, 1981) and EEG (Kutas \& Hillyard, 1980, 1984) evidence shows this affects processing rapidly
- A good model should account for expectations about how this uncertainty will be resolved

Rayner \& Well 1996

The hikers slowly climbed up the

Rayner \& Well 1996

The hikers slowly climbed up the mountain (95\%)

Rayner \& Well 1996

The hikers slowly climbed up the mountain (95\%) hillside (3ㅇ)

Rayner \& Well 1996

The hikers slowly climbed up the
Equal word length
\& frequency $\left\{\begin{array}{l}\text { mountain } \\ \text { hillside } \\ \text { (} 95 \% \text {) }\end{array}\right.$

Rayner \& Well 1996

The hikers slowly climbed up the mountain to get a better view. The hikers slowly climbed up the hillside to get a better view.

Constraint Fixation Probability First Fixation Gaze Duration Total Time

High	0.78	239	261	294
Low	0.90	250	281	360

Staub 2011

While the professor lectured the students walked across the quad.

Staub 2011

While the professor lectured the students walked across the quad.

Staub 2011

[While the professor [lectured the students]] walked across the quad. Subj Obj

Staub 2011

[While the professor [lectured the students]] walked across the quad. Subj Obj
[While the professor lectured] [the students walked across the quad.] Subj V Subj

Staub 2011

[While the professor [lectured the students]] walked across the quad. Subj Obj
[While the professor lectured] [the students walked across the quad.] Subj

V Subj

Staub 2011

[While the professor [lectured the students]] walked across the quad. Subj Obj

While the professor lectured, the students walked across the quad.

Staub 2011

[While the professor [lectured the students]] walked across the quad. Subj V Obj

[While the professor lectured,] [the students walked across the quad.] Subj V Subj

Staub 2011: word frequency \& predictability effects

While the professor lectured the students walked across the quad.
While the professor lectured, the students walked across the quad.

Staub 2011: word frequency \& predictability effects

While the professor lectured the students walked across the quad. (ambiguous)

While the professor lectured, the students walked across the quad.

Staub 2011: word frequency \& predictability effects

While the professor lectured the students walked across the quad. (ambiguous)

While the professor lectured, the students walked across the quad. (unambiguous)

Staub 2011: word frequency \& predictability effects

While the professor lectured the students walked across the quad. (ambiguous)
ambled
While the professor lectured, the students walked across the quad. (unambiguous)
ambled

Staub 2011: word frequency \& predictability effects

Staub 2011: word frequency \& predictability effects

Staub 2011: word frequency \& predictability effects

Staub 2011: word frequency \& predictability effects

Psycholinguistic methodology (2)

Psycholinguistic methodology (2)

- A lower-tech method: self-paced reading (SPR)

Psycholinguistic methodology (2)

- A lower-tech method: self-paced reading (SPR)
- Reveal each consecutive word with a button press

Psycholinguistic methodology (2)

- A lower-tech method: self-paced reading (SPR)
- Reveal each consecutive word with a button press

Psycholinguistic methodology (2)

- A lower-tech method: self-paced reading (SPR)
- Reveal each consecutive word with a button press

Psycholinguistic methodology (2)

- A lower-tech method: self-paced reading (SPR)
- Reveal each consecutive word with a button press
----- the

Psycholinguistic methodology (2)

- A lower-tech method: self-paced reading (SPR)
- Reveal each consecutive word with a button press

Psycholinguistic methodology (2)

- A lower-tech method: self-paced reading (SPR)
- Reveal each consecutive word with a button press
crackled,

Psycholinguistic methodology (2)

- A lower-tech method: self-paced reading (SPR)
- Reveal each consecutive word with a button press

Psycholinguistic methodology (2)

- A lower-tech method: self-paced reading (SPR)
- Reveal each consecutive word with a button press

Psycholinguistic methodology (2)

- A lower-tech method: self-paced reading (SPR)
- Reveal each consecutive word with a button press

Psycholinguistic methodology (2)

- A lower-tech method: self-paced reading (SPR)
- Reveal each consecutive word with a button press

Psycholinguistic methodology (2)

- A lower-tech method: self-paced reading (SPR)
- Reveal each consecutive word with a button press
- Readers aren't allowed to backtrack

Psycholinguistic methodology (2)

- A lower-tech method: self-paced reading (SPR)
- Reveal each consecutive word with a button press
- Readers aren't allowed to backtrack
- We measure time between button presses and use it as a proxy for incremental processing difficulty

Psycholinguistic methodology (3)

Psycholinguistic methodology (3)

- Another lower-tech method: the maze

Psycholinguistic methodology (3)

- Another lower-tech method: the maze
- Choose the word that fits given the preceding context

Psycholinguistic methodology (3)

- Another lower-tech method: the maze
- Choose the word that fits given the preceding context

Psycholinguistic methodology (3)

- Another lower-tech method: the maze
- Choose the word that fits given the preceding context

The
$x-x-x$

〕.

Psycholinguistic methodology (3)

- Another lower-tech method: the maze
- Choose the word that fits given the preceding context

The

$$
x-x-x
$$

〕.

Psycholinguistic methodology (3)

- Another lower-tech method: the maze
- Choose the word that fits given the preceding context

dog

〕

Psycholinguistic methodology (3)

- Another lower-tech method: the maze
- Choose the word that fits given the preceding context

dog

〕

Psycholinguistic methodology (3)

- Another lower-tech method: the maze
- Choose the word that fits given the preceding context
pretty
chased

Psycholinguistic methodology (3)

- Another lower-tech method: the maze
- Choose the word that fits given the preceding context
pretty
chased

〕

Psycholinguistic methodology (3)

- Another lower-tech method: the maze
- Choose the word that fits given the preceding context
the

eat

J

Psycholinguistic methodology (3)

- Another lower-tech method: the maze
- Choose the word that fits given the preceding context

〕

Psycholinguistic methodology (3)

- Another lower-tech method: the maze
- Choose the word that fits given the preceding context

the

eat

Example SPR and Maze results

James will fix the car he drove today, but he will need some help.

James will fix the car he drove tomorrow, but he will need some help.

Position:
 0

Results in the lab

(Witzel et al., 2012; Boyce et al., 2020)

Results on the web
(Mechanical Turk)

Incrementality, structure, and surprise

The woman brought the sandwich from the kitchen tripped.
The woman given the sandwich from the kitchen tripped.
The woman who was brought the sandwich from the kitchen tripped.
The woman who was given the sandwich from the kitchen tripped.

Simple past Past participle
bring brought brought
give gave given

Incrementality, structure, and surprise

Is the relative clause reduced?

The woman brought the sandwich from the kitchen tripped.	+
The woman given the sandwich from the kitchen tripped.	+
The woman who was brought the sandwich from the kitchen tripped.	-
The woman who was given the sandwich from the kitchen tripped.	-

Simple past Past participle

bring brought brought
give gave given

Incrementality, structure, and surprise

Incrementality, structure, and surprise

Psycholinguistic methodology (3)

- Neurolinguistic experimentation is more and more widely used to study language comprehension
- methods vary in temporal and spatial resolution
- people are more passive in these experiments: sit back and listen to/read a sentence, word by word
- strictly speaking not behavioral measures
- the question of "what is difficult" becomes a little less straightforward

Electrophysiological responses

Rapid Serial Visual Presentation

Rapid Serial Visual Presentation

The N400 in language comprehension

- Differing degrees of semantic congruity:
- He took a sip from the drink. (normal)
- He took a sip from the waterfall. (moderate incongruity)
- He took a sip from the transmitter. (strong incongruity)

B Semantic-moderate

C Semantic-strong

(Kutas \& Hillyard, 1980, 1984)

The P600 ERP component in language comprehension

The P600 ERP component in language comprehension

- Mismatches to lexically specified (definitiona/*) semantic properties induce measurable expectation violations

The P600 ERP component in language comprehension

- Mismatches to lexically specified (definitiona/*) semantic properties induce measurable expectation violations
The man prepared herself for the interview.

The P600 ERP component in language comprehension

- Mismatches to lexically specified (definitiona/*) semantic properties induce measurable expectation violations
The man prepared herself)for the interview.

The P600 ERP component in language comprehension

- Mismatches to lexically specified (definitiona/*) semantic properties induce measurable expectation violations
The man prepared herselffor the interview.

The P600 ERP component in language comprehension

- Mismatches to lexically specified (definitiona/*) semantic properties induce measurable expectation violations The man prepared herselffor the interview.

The P600 ERP component in language comprehension

- Mismatches to lexically specified (definitiona/*) semantic properties induce measurable expectation violations
The man prepared herself)for the interview.

The P600 ERP component in language comprehension

- Mismatches to lexically specified (definitiona/*) semantic properties induce measurable expectation violations The man prepared herselffor the interview.

- Mismatches to stereotypical semantic properties induce similar violations
The nurse prepared himself for the operation.

The P600 ERP component in language comprehension

- Mismatches to lexically specified (definitiona/*) semantic properties induce measurable expectation violations The man prepared herselffor the interview.

- Mismatches to stereotypical semantic properties induce similar violations
The nurse prepareo himselffor the operation.

The P600 ERP component in language comprehension

- Mismatches to lexically specified (definitiona/*) semantic properties induce measurable expectation violations The man prepared herselffor the interview.

- Mismatches to stereotypical semantic properties induce similar violations
The nurse prepareo himselffor the operation.

The P600 ERP component in language comprehension

- Mismatches to lexically specified (definitiona/*) semantic properties induce measurable expectation violations The man prepared herselffor the interview.

- Mismatches to stereotypical semantic properties induce similar violations
The nurse prepareo himselffor the operation.

fMRI recordings during comprehension

- MRI measures changes in brain associated with blood flow
- Slow, but good spatial resolution for which parts of the brain are active in processing

fMRI recordings during comprehension

- MRI measures changes in brain associated with blood flow
- Slow, but good spatial resolution for which parts of the brain are active in processing

Sentences condition

Nonwords condition

fMRI recordings during comprehension

- MRI measures changes in brain associated with blood flow
- Slow, but good spatial resolution for which parts of the brain are active in processing

Sentences condition
A

Nonwords condition

Expt 3 (Verbal WM): Sample trial (hard condition)
$+$
three six

two four one eight

Response
Feedback

Functional brain specificity for language

Language and Verbal WM

Electrocorticography

- Pre-surgical epilepsy patients get electrode arrays directly implanted on the surface of the cortex

https://commons.wikimedia.org/wiki/
File:Intracranial_electrode_grid_for_electrocorticography.png

- During pre-surgical monitoring many patients generously donate their energy \& attention for experiments

Neural phonemic representations

Neural consonant representations

Scientific opportunity:

Comprehensive theory to account for patterns of human language use \& representation

Engineering opportunity:

Better prediction of human language understanding, and more human-like AI language-using agents

References

Allopenna, P. D., Magnuson, J. S., \& Tanenhaus, M. K. (1998). Tracking the time course of spoken word recognition using eye movements: Evidence for continuous mapping models. Journal of Memory and Language, 38, 419-439.

Ehrlich, S. F., \& Rayner, K. (1981). Contextual effects on word perception and eye movements during reading. Journal of verbal learning and verbal behavior, 20(6), 641-655.

Duffy, S. A., \& Keir, J. A. (2004). Violating stereotypes: Eye movements and comprehension processes when text conflicts with world knowledge. Memory \& Cognition, 32, 551-559.

Fedorenko E, Behr MK, Kanwisher N (2011) Functional specificity for high-level linguistic processing in the human brain. Proc Natl Acad Sci USA 108(39):16428-16433.

Hale, J. (2001, June). A probabilistic Earley parser as a psycholinguistic model. In Proceedings of the second meeting of the North American Chapter of the Association for Computational Linguistics on Language technologies (pp. 1-8). Association for Computational Linguistics.

Kutas, M., \& Hillyard, S. A. (1980). Reading senseless sentences: Brain potentials reflect semantic incongruity. Science, 207(4427), 203-205. Kutas, M., \& Hillyard, S. A. (1984). Brain potentials during reading reflect word expectancy and semantic association. Nature, 307(5947), 161. Levy, R. (2008). Expectation-based syntactic comprehension. Cognition, 106(3), 1126-1177.

Osterhout, L., Bersick, M., \& Mclaughlin, J. (1997). Brain potentials reflect violations of gender stereotypes. Memory \& Cognition, 25, 273285.

Rayner, K., \& Well, A. D. (1996). Effects of contextual constraint on eye movements in reading: A further examination. Psychonomic Bulletin \& Review, 3(4), 504-509.

Smith, N. J., \& Levy, R. (2013). The effect of word predictability on reading time is logarithmic. Cognition, 128(3), 302-319.
Staub, A. (2011). Word recognition and syntactic attachment in reading: Evidence for a staged architecture. Journal of Experimental Psychology: General, 140(3), 407.

Sturt, P. (2003). The time-course of the application of binding constraints in reference resolution. Journal of Memory and Language, 48, 542562.

Taylor, W. L. (1953). "Cloze procedure": A new tool for measuring readability. Journalism Bulletin, 30(4), 415-433.

