Words

9.19: Computational Psycholinguistics 18 September 2023
 Roger Levy

How do we learn so many words?

- The average 20-year-old native English speaker knows 42,000 lemmas
- That is 5.75 lemmas per day, every day!
- The mystery:

The average seventh-grader...must have acquired most of them as a result of reading because (a) the majority of English words are used only in print, (b) she already knew well almost all the words she would have encountered in speech, and (c) she learned less than one word by direct instruction. Studies of children reading grade-school text find that about one word in every 20 paragraphs goes from wrong to right on a vocabulary test. The typical seventh grader would have read less than 50 paragraphs since yesterday, from which she should have learned less than three new words. Apparently, she mastered the meanings of [several] words that she did not encounter.
(Landauer \& Dumais, 1997, Psychological Review)

The distributional hypothesis

The distributional hypothesis

We saw a cute, hairy wampimuk sleeping behind the tree

The distributional hypothesis

We saw a cute, hairy wampimuk sleeping behind the tree

- The Distributional Hypothesis of Harris (1954): the context in which a word appears carries information about its meaning

The distributional hypothesis

We saw a cute, hairy wampimuk sleeping behind the tree

- The Distributional Hypothesis of Harris (1954): the context in which a word appears carries information about its meaning
- Succinct versions:

The distributional hypothesis

We saw a cute, hairy wampimuk sleeping behind the tree

- The Distributional Hypothesis of Harris (1954): the context in which a word appears carries information about its meaning
- Succinct versions:
- "You shall know a word by the company it keeps" (Firth, 1957)

The distributional hypothesis

We saw a cute, hairy wampimuk sleeping behind the tree

- The Distributional Hypothesis of Harris (1954): the context in which a word appears carries information about its meaning
- Succinct versions:
- "You shall know a word by the company it keeps" (Firth, 1957)
- "...the linguistic meanings which the structure carries can only be due to the relations in which the elements of the structure take part" (Harris, 1968)

More complex examples

The degus was hermetically broamed.

Implicit distributional/contextual knowledge

What word can appear in the context of all these words?

> Word 1: drown, bathroom, shower, fill, fall, lie, electrocute, toilet, whirlpool, iron, gin

> Word 3: advocate, overthrow, establish, citizen, ideal, representative, dictatorship, campaign, bastion, freedom

Word 2: eat, fall, pick, slice, peel, tree, throw, fruit, pie, bite, crab, grate

Word 4: spend, enjoy, remember, last, pass, end, die, happen, brighten, relive

Implicit distributional/contextual knowledge

What word can appear in the context of all these words?

Word 1: drown, ba bathtub shower, fill, fall, lie, electrocute, toilet, whirlpool, iron, gin

Word 3: advocate,
 democracy

 overthrow, establish, citizen, ideal, representative, dictatorship,campaign, bastion, freedom representative, dictatorship,
campaign, bastion, freedom

Word 2: eat, fall, pick, slice, peel, tree, throw, fruit, pie, bite, crab, grate

Word 4: spend, enjoy, remember, last, pass, end, die, happen, brighten, relive

A more complex case

Word 5: eat, paint, peel, apple, fruit, juice, lemon, blue, grow

A more complex case

Word 5: eat, paint, peel, apple, fruit, juice, lemon, blue, grow

A practical problem for n-gram modeling

- Consider the distributions on these contexts:
- The soup was..
- The broth was...
\(\left.\begin{array}{l}7402

1903

231

118

815

122\end{array}\right\}\)| Google Web |
| :--- |
| context counts |

- n-gram models have no built-in ways of leveraging similarity among contexts
- Similar problems exist for conditioning on context for probabilistic grammars

Innovation in multi-word expressions

- What can you drive someone...?

Innovation in multi-word expressions

- What can you drive someone...?

mad

Innovation in multi-word expressions

- What can you drive someone...?

mad

crazy

Innovation in multi-word expressions

- What can you drive someone...?

mad

crazy

to distraction

Innovation in multi-word expressions

- What can you drive someone...?

mad
crazy

to distraction

bananas

Innovation in multi-word expressions

- What can you drive someone...?

mad

crazy

to distraction

bananas

insane

Innovation in multi-word expressions

- What can you drive someone...?

mad

crazy
to distraction

bananas

insane

nuts

Innovation in multi-word expressions

- These expressions do not come on the scene independently!
- There is lexical specificity, but innovation also spreads along lines of semantic similarity

Fundamental idea

- We have tens of thousands of words in our lexicon
- But semantic lexical knowledge mostly lives on a lowerdimensional subspace
- By learning that lower-dimensional subspace, we can:
- Better handle data sparsity in practical NLP applications
- Resolve the mystery of how we learn so many words so fast
- Improve our understanding of human conceptual space
- Better explain the full distribution of linguistic expressions

Technical foundations

- We want to go from sparse...

$$
\llbracket d o g \rrbracket=[0,0, \ldots, 0,1,0, \ldots, 0]
$$

- ...to dense:

$$
\llbracket d o g \rrbracket=[-0.11,0.81, \ldots, \ldots, 0.58,0.07]
$$

- There are many ways proposed to do this!

Low-dimensional word meanings from contexts

- The general goal:

How can we compare two context collections in their entirety?

Count how often "apple" occurs close to other words in a large text collection (corpus):

eat	fall	ripe	slice	peel	tree	throw	fruit	pie	bite	crab
794	244	47	221	208	160	145	156	109	104	88

Interpret counts as coordinates:

Every context word becomes a dimension.

How can we compare two context collections in their entirety?

Then visualize both count tables as vectors in the same space:

eat	fall	ripe	slice	peel	tree	throw	fruit	pie	bite	crab
794	244	47	221	208	160	145	156	109	104	88
eat	fall	ripe	slice	peel	tree	throw	fruit	pie	bite	crab
265	22	25	62	220	64	74	111	4	4	8

Similarity between two words as proximity in space

Hierarchical Bayesian methods

- Latent Dirichlet Allocation (aka Topic Models): Blei, Ng, Jordan $(2001,2003)$
$\phi^{()} \sim \operatorname{Dirichlet}(\beta)$

Hierarchical Bayesian methods

- Latent Dirichlet Allocation (aka Topic Models): Blei, Ng, Jordan $(2001,2003)$
$\phi^{()} \sim \operatorname{Dirichlet}(\beta)$

Hierarchical Bayesian methods

- Latent Dirichlet Allocation (aka Topic Models): Blei, Ng, Jordan $(2001,2003)$
$\phi^{()} \sim$ Dirichlet (β)

Hierarchical Bayesian methods

- Latent Dirichlet Allocation (aka Topic Models): Blei, Ng, Jordan $(2001,2003)$

Hierarchical Bayesian methods

- Latent Dirichlet Allocation (aka Topic Models): Blei, Ng, Jordan $(2001,2003)$

Hierarchical Bayesian methods

- Latent Dirichlet Allocation (aka Topic Models): Blei, Ng, Jordan $(2001,2003)$

Interpretable topics

DISEASE	WATER	MIND	STORY	FIELD	SCIENCE	BALL	JOB
BACTERIA	FISH	WORLD	STORIES	MAGNETIC	STUDY	GAME	WORK
DISEASES	SEA	DREAM	TELL	MAGNET	SCIENTISTS	TEAM	JOBS
GERMS	SWIM	DREAMS	CHARACTER	WIRE	SCIENTIFIC	FOOTBALL	CAREER
FEVER	SWIMMING	THOUGHT	CHARACTERS	NEEDLE	KNOWLEDGE	BASEBALL	EXPERIENCE
CAUSE	POOL	IMAGINATINN	AUTHOR	CURRENT	WORK	PLAYERS	EMPLOYMENT
CAUSED	LIKE	MOMENT	READ	COIL	RESEARCH	PLAY	OPPORTUNITIES
SPREAD	SHELL	THOUGHTS	TOLD	POLES	CHEMISTRY	FIELD	WORKING
VIRUSES	SHARK	OWN	SETTING	IRON	TECHNOLOGY	PLAYER	TRAINING
INFECTION	TANK	REAL	TALES	COMPASS	MANY	BASKETBALL	SKILLS
VIRUS	SHELLS	LIFE	PLOT	LINES	MATHEMATICS	COACH	CAREERS
MICROORGANISMS	SHARKS	IMAGINE	TELLING	CORE	BIOLOGY	PLAYED	POSITIONS
PERSON	DIVING	SENSE	SHORT	ELECTRIC	FIELD	PLAYING	FIND
INFECTIOUS	DOLPHINS	CONSCIOUSNESS	FICTION	DIRECTION	PHYSICS	HIT	POSITION
COMMON	SWAM	STRANGE	ACTION	FORCE	LABORATORY	TENNIS	FIELD
CAUSING	LONG	FEELING	TRUE	MAGNETS	STUDIES	TEAMS	OCCUPATIONS
SMALLPOX	SEAL	WHOLE	EVENTS	BE	WORLD	GAMES	REQUURE
BODY	DIVE	BEING	TELLS	MAGNETISM	SCIENTIST	SPORTS	OPPORTUNITY
INFECTIONS	DOLPHIN	MIGHT	TALE	POLE	STUDYING	BAT	EARN
CERTAIN	UNDERWATER	HOPE	NOVEL	INDUCED	SCIENCES	TERRY	ABLE

each column shows words from a single topic, ordered by $\mathrm{P}(w \mid z)$

The first neural embedding: word2vec

word2vec implements several different algorithms:

Two training methods

- Negative Sampling
- Hierarchical Softmax

Two context representations

- Continuous Bag of Words (CBOW)
- Skip-grams

How does word2vec work?

- Represent each word as a dimensional vector.
- Represent each context as a dimensional vector.
- Initalize all vectors to random weights.
- Arrange vectors in two matrices, W and C.

How does word2vec work?

While more text:

- Extract a word window:

A springer is [$\left.\begin{array}{cccccccc}\text { a } & \text { cow } & \text { or } & \text { heifer } & \text { close } & \text { to } & \text { calving } \\ c_{1} & c_{2} & c_{3} & w & c_{4} & c_{5} & c_{6}\end{array}\right]$.

- Try setting the vector values such that:
$\sigma\left(w \cdot c_{1}\right)+\sigma\left(w \cdot c_{2}\right)+\sigma\left(w \cdot c_{3}\right)+\sigma\left(w \cdot c_{4}\right)+\sigma\left(w \cdot c_{5}\right)+\sigma\left(w \cdot c_{6}\right)$ is high
- Create a corrupt example by choosing a random word w^{\prime}

$$
\left[\begin{array}{ccccccc}
\text { a } & \text { cow } & \text { or } & \text { comet } & \text { close } & \text { to } & \text { calving } \\
c_{1} & c_{2} & c_{3} & w^{\prime} & c_{4} & c_{5} & c_{6}
\end{array}\right.
$$

- Try setting the vector values such that:

$$
\sigma\left(w^{\prime} \cdot c_{1}\right)+\sigma\left(w^{\prime} \cdot c_{2}\right)+\sigma\left(w^{\prime} \cdot c_{3}\right)+\sigma\left(w^{\prime} \cdot c_{4}\right)+\sigma\left(w^{\prime} \cdot c_{5}\right)+\sigma\left(w^{\prime} \cdot c_{6}\right)
$$

is low

How does word2vec work?

The training procedure results in:

- w c c for good word-context pairs is high.
- w $\cdot \boldsymbol{c}$ for bad word-context pairs is low.
- w c c for ok-ish word-context pairs is neither high nor low.

As a result:

- Words that share many contexts get close to each other.
- Contexts that share many words get close to each other.

At the end, word2vec throws away C and returns W.

Continuous bag of words

INPUT PROJECTION OUTPUT

Skip-gram

A competitor word embedding: GloVe

A competitor word embedding: GloVe

- The basic intuition: ratios of conditional probabilities might give us a handle on meaning components

A competitor word embedding: GloVe

- The basic intuition: ratios of conditional probabilities might give us a handle on meaning components

Probability and Ratio	$k=$ solid	$k=$ gas	$k=$ water	$k=$ fashion
$P(k \mid$ ice $)$	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
$P(k \mid$ steam $)$	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
$P(k \mid$ ice $) / P(k \mid$ steam $)$	8.9	8.5×10^{-2}	1.36	0.96

A competitor word embedding: GloVe

- The basic intuition: ratios of conditional probabilities might give us a handle on meaning components

Probability and Ratio	$k=$ solid	$k=$ gas	$k=$ water	$k=$ fashion
$P(k \mid$ ice $)$	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
$P(k \mid$ steam $)$	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
$P(k \mid$ ice $) / P(k \mid$ steam $)$	8.9	8.5×10^{-2}	1.36	0.96

A competitor word embedding: GloVe

- The basic intuition: ratios of conditional probabilities might give us a handle on meaning components

Probability and Ratio	$k=$ solid	$k=$ gas	$k=$ water	$k=$ fashion
$P(k \mid$ ice $)$	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
$P(k \mid$ steam $)$	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
$P(k \mid$ ice $) / P(k \mid$ steam $)$	8.9	8.5×10^{-2}	1.36	0.96

Highly imbalanced; argued to pick
out distinctive difference in meaning component of íce versus steam

A competitor word embedding: GloVe

- The basic intuition: ratios of conditional probabilities might give us a handle on meaning components

Probability and Ratio	$k=$ solid	$k=$ gas	$k=$ water	$k=$ fashion
$P(k \mid$ ice $)$	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
$P(k \mid$ steam $)$	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
$P(k \mid$ ice $) / P(k \mid$ steam $)$	8.9	8.5×10^{-2}	1.36	0.96

Highly imbalanced; argued to pick
out distinctive difference in meaning component of íce versus steam

A competitor word embedding: GloVe

- The basic intuition: ratios of conditional probabilities might give us a handle on meaning components

Probability and Ratio	$k=$ solid	$k=$ gas	$k=$ water	$k=$ fashion
$P(k \mid$ ice $)$	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
$P(k \mid$ steam $)$	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
$P(k \mid$ ice $) / P(k \mid$ steam $)$	8.9	8.5×10^{-2}	1.36	0.96

Highly imbalanced; argued to pick out distinctive difference in meaning component of ice versus steam

Balanced; argued not to pick out distinctive difference in meaning of ice versus steam

A competitor word embedding: GloVe

- The basic intuition: ratios of conditional probabilities might give us a handle on meaning components

Probability and Ratio	$k=$ solid	$k=$ gas	$k=$ water	$k=$ fashion
$P(k \mid$ ice $)$	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
$P(k \mid$ steam $)$	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
$P(k \mid$ ice $) / P(k \mid$ steam $)$	8.9	8.5×10^{-2}	1.36	0.96

Highly imbalanced; argued to pick out distinctive difference in meaning component of ice versus steam

Balanced; argued not to pick out distinctive difference in meaning of ice versus steam

- Argument: we want our model to optimally approximate

A competitor word embedding: GloVe

- The basic intuition: ratios of conditional probabilities might give us a handle on meaning components

Probability and Ratio	$k=$ solid	$k=$ gas	$k=$ water	$k=$ fashion
$P(k \mid$ ice $)$	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
$P(k \mid$ steam $)$	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
$P(k \mid$ ice $) / P(k \mid$ steam $)$	8.9	8.5×10^{-2}	1.36	0.96

Highly imbalanced; argued to pick
out distinctive difference in meaning component of ice versus steam

Balanced; argued not to pick out distinctive difference in meaning of ice versus steam

- Argument: we want our model to optimally approximate

$$
\frac{P\left(w_{k} \mid w_{i}\right)}{P\left(w_{k} \mid w_{j}\right)}=\frac{P\left(w_{k}, w_{i}\right)}{P\left(w_{j}, w_{i}\right)} \approx_{R F E} \frac{X_{i k}}{X_{j k}}
$$

(Pennington et al., 2014)

A competitor word embedding: GloVe

- The basic intuition: ratios of conditional probabilities might give us a handle on meaning components

Probability and Ratio	$k=$ solid	$k=$ gas	$k=$ water	$k=$ fashion
$P(k \mid$ ice $)$	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
$P(k \mid$ steam $)$	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
$P(k \mid$ ice $) / P(k \mid$ steam $)$	8.9	8.5×10^{-2}	1.36	0.96

Highly imbalanced; argued to pick out distinctive difference in meaning component of ice versus steam

Balanced; argued not to pick out distinctive difference in meaning of ice versus steam

- Argument: we want our model to optimally approximate

$$
\frac{P\left(w_{k} \mid w_{i}\right)}{P\left(w_{k} \mid w_{j}\right)}=\frac{P\left(w_{k}, w_{i}\right)}{P\left(w_{j}, w_{i}\right)} \approx_{R F E} \frac{X_{i k}}{X_{j k}}
$$

(Pennington et al., 2014)

A competitor word embedding: GloVe

- The basic intuition: ratios of conditional probabilities might give us a handle on meaning components

Probability and Ratio	$k=$ solid	$k=$ gas	$k=$ water	$k=$ fashion
$P(k \mid$ ice $)$	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
$P(k \mid$ steam $)$	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
$P(k \mid$ ice $) / P(k \mid$ steam $)$	8.9	8.5×10^{-2}	1.36	0.96

Highly imbalanced; argued to pick out distinctive difference in meaning component of ice versus steam

Balanced; argued not to pick out distinctive difference in meaning of ice versus steam

- Argument: we want our model to optimally approximate

$$
\frac{P\left(w_{k} \mid w_{i}\right)}{P\left(w_{k} \mid w_{j}\right)}=\frac{P\left(w_{k}, w_{i}\right)}{P\left(w_{j}, w_{i}\right)} \approx_{R F E} \frac{X_{i k}}{X_{j k}} \quad \begin{gathered}
\text { co-occurrence } \\
\text { count of } w_{i}, W_{j}
\end{gathered}
$$

(Pennington et al., 2014)

Deriving the GloVe word vector model

- We enforce probability ratios to be the ratio of dotproducts of the target word to context words

$$
F\left(\left(w_{i}-w_{j}\right)^{T} \tilde{w}_{k}\right)=\frac{P_{i k}}{P_{j k}}
$$

- With a lot more simplification and argumentation we get the following objective function to minimize:
$f\left(X_{i j}\right)$ chosen to
$J=\sum_{i, j=1}^{V} f\left(X_{i j}\right) \underbrace{w_{i}^{T} \tilde{w}_{j}}_{i}+\underbrace{b_{i}}_{i}+\underbrace{\tilde{b}_{j}}_{j}-\log X_{i j})^{2}$
word vector bias vectors (ignore)

Word meanings reflected in embeddings

word2vec
Country and Capital Vectors Projected by PCA

GloVe Word Embedding (6B.300d) - Food Related Area
vineyard crate, laundry

(Pennington et al., 2014)

Exploring GLoVE meaning spaces \& analogies

Try playing with this fun visualization tool!
https://lamyiowce.github.io/word2viz/

word2vec embeddings over time

Figure 1: Two-dimensional visualization of semantic change in English using SGNS vectors. ${ }^{2}$ a, The word gay shifted from meaning "cheerful" or "frolicsome" to referring to homosexuality. b, In the early 20th century broadcast referred to "casting out seeds"; with the rise of television and radio its meaning shifted to "transmitting signals". c, Awful underwent a process of pejoration, as it shifted from meaning "full of awe" to meaning "terrible or appalling" (Simpson et al., 1989).

Application: is bias embedded in our language?

Application: is bias embedded in our language?

Application: is bias embedded in our language?

ANSWERS

Social Science Gender \& Women's Studies

Feminists:What do you think of neil armstrongs"one small step for man"?

Just wondering but what do you think of that, do you find it sexist?

Application: is bias embedded in our language?

ThoughtCo.
Humanities , Languages

Sexist Language

Tips on Removing It From Your Writing

Social Science Gender \& Women's Studies

Feminists:What do you think of neil armstrongs"one small step for man"?

Just wondering but what do you think of that, do you find it sexist?

Application: is bias embedded in our language?

Subscribe Findajob Sign in Search \sim
Opinion Sport Culture Lifestyle More

The Guardian view Columnists Letters Opinion videos Cartoons

YAHOO!

Search Answers

Language

 BuzzwordsEight words that reveal the sexism at the heart of the English language David Shariatmadari

Humanities , Languages

Sexist Language

Tips on Removing It From Your Writing
f SHARE F FIIP \square emall

Makea contribution	Subscribe Find a job	Sign in Search v	
News	Opinion	Sport \quad Culture	Lifestyle More

Australia World AU politics Environment Football Indigenous Australia Immigration Media Business Science Tech

Sexist language: it's every man for him or herself
David Marsh

Application: is bias embedded in our language?

Subscribe Findajob Sign in Search~
Opinion Sport Lifestyle More \sim

The Guardian view Columnists Letters Opinion videos Cartoons

YAHOO!

Search Answers

Language Eight words that reveal the sexism at
the heart of the English language David Shariatmadari

Humanities > Languages

Sexist Language

Tips on Removing It From Your Writing
f SHARE F fulp \square Emall

Social Science Gender \& Women's Studies

Feminists:What do you think of neil armstrongs"one small step for man"?

Just wondering but what do you think of that, do you find it sexist?

Makea contribution	Subscribe Find ajob	Sign in Search v	
News	Opinion	Sport \quad Culture	Lifestyle

Australia World AUpolitics Environment Football Indigenous Australia Immigration Media Business Science Tech

Sexist language: it's every man for him or herself
David Marsh

The author of Winnie-the-Pooh thought 'he or she' should be replaced by 'heesh', but there's nothing wrong with singular 'they'

How do we bring this question into our scientific reach?

Electrophysiological responses

Rapid Serial Visual Presentation

Rapid Serial Visual Presentation

The N400 in language comprehension

- Differing degrees of semantic congruity:
- He took a sip from the drink. (normal)
- He took a sip from the waterfall. (moderate incongruity)
- He took a sip from the transmitter. (strong incongruity)

B Semantic-moderate

C Semantic-strong

(Kutas \& Hillyard, I980, I 984)

Categorical \& stereotypical semantic knowledge

Categorical \& stereotypical semantic knowledge

- Mismatches to lexically specified (definitiona/*) semantic properties induce measurable expectation violations

Categorical \& stereotypical semantic knowledge

- Mismatches to lexically specified (definitiona/*) semantic properties induce measurable expectation violations The man prepared herself for the interview.

Categorical \& stereotypical semantic knowledge

- Mismatches to lexically specified (definitiona/*) semantic properties induce measurable expectation violations The man prepared herselffor the interview.

Categorical \& stereotypical semantic knowledge

- Mismatches to lexically specified (definitiona/*) semantic properties induce measurable expectation violations The man prepared herselffor the interview.

Categorical \& stereotypical semantic knowledge

- Mismatches to lexically specified (definitiona/*) semantic properties induce measurable expectation violations The man prepared herselffor the interview.

Categorical \& stereotypical semantic knowledge

- Mismatches to lexically specified (definitiona/*) semantic properties induce measurable expectation violations The man prepared herselffor the interview.

"Definitional" mismatch (man...herself)

Categorical \& stereotypical semantic knowledge

- Mismatches to lexically specified (definitiona/*) semantic properties induce measurable expectation violations The man prepared herselffor the interview.
"Definitional" match

"Definitional" mismatch (man...herself)
- Mismatches to stereotypical semantic properties induce similar violations

The nurse prepared himself for the operation.

Categorical \& stereotypical semantic knowledge

- Mismatches to lexically specified (definitiona/*) semantic properties induce measurable expectation violations The man prepared herselffor the interview.
"Definitional" match

"Definitional" mismatch (man...herself)
- Mismatches to stereotypical semantic properties induce similar violations

The nurse prepareo himselfior the operation.

Categorical \& stereotypical semantic knowledge

- Mismatches to lexically specified (definitiona/*) semantic properties induce measurable expectation violations The man prepared herselffor the interview.
"Definitional" match

Stereotypical mismatch
"Definitional" mismatch
(man...herself)

- Mismatches to stereotypical semantic properties induce similar violations

The nurse prepareo himself f or the operation.

Categorical \& stereotypical semantic knowledge

- Mismatches to lexically specified (definitiona/*) semantic properties induce measurable expectation violations The man prepared herselffor the interview.

Stereotypical mismatch
"Definitional" mismatch
(man...herself)

- Mismatches to stereotypical semantic properties induce similar violations

The nurse prepareo himselfior the operation.

Stereotypes as implicit associations among concepts

Stereotypes as implicit associations among concepts

Stereotypes as implicit associations among concepts

Female
Career

Male
Family

Salary

Might stereotypes manifest in distributed linguistic representations too, biasing them?

Might stereotypes manifest in distributed linguistic representations too, biasing them?

How could we tell?

Quantifying embedding bias

Quantifying embedding bias

Group 1 words he, son, his, him, father, man, boy, himself, male, brother, sons, fathers, men, boys, males, brothers, uncle, uncles, nephew, nephews

Quantifying embedding bias

Group 1 words

Group 2 words
he, son, his, him, father, man, boy, himself, male, brother, sons, fathers, men, boys, males, brothers, uncle, uncles, nephew, nephews
she, daughter, hers, her, mother, woman, girl, herself, female, sister, daughters, mothers, women, girls, females, sisters, aunt, aunts, niece, nieces

Quantifying embedding bias

Group 1 words

Group 2 words

Group "M" words
he, son, his, him, father, man, boy, himself, male, brother, sons, fathers, men, boys, males, brothers, uncle, uncles, nephew, nephews
she, daughter, hers, her, mother, woman, girl, herself, female, sister, daughters, mothers, women, girls, females, sisters, aunt, aunts, niece, nieces
janitor, statistician, midwife, bailiff, auctioneer, photographer, geologist, shoemaker, athlete, cashier, dancer, housekeeper, accountant, physicist, gardener, dentist, weaver, blacksmith, psychologist, supervisor, mathematician, surveyor, tailor, designer, economist, mechanic, laborer, postmaster, broker, chemist, librarian, attendant, clerical, musician, porter, scientist, carpenter, sailor, instructor, sheriff, pilot, inspector, mason, baker, administrator, architect, collector, operator, surgeon, driver, painter, conductor, nurse, cook, engineer, retired, sales, lawyer, clergy, physician, farmer, clerk, manager, guard, artist, smith, official, police, doctor, professor, student, judge, teacher, author, secretary, soldier

Quantifying embedding bias

Group 1 words
Mean vector: v_{1}
Group 2 words

Group "M" words
he, son, his, him, father, man, boy, himself, male, brother, sons, fathers, men, boys, males, brothers, uncle, uncles, nephew, nephews
she, daughter, hers, her, mother, woman, girl, herself, female, sister, daughters, mothers, women, girls, females, sisters, aunt, aunts, niece, nieces
janitor, statistician, midwife, bailiff, auctioneer, photographer, geologist, shoemaker, athlete, cashier, dancer, housekeeper, accountant, physicist, gardener, dentist, weaver, blacksmith, psychologist, supervisor, mathematician, surveyor, tailor, designer, economist, mechanic, laborer, postmaster, broker, chemist, librarian, attendant, clerical, musician, porter, scientist, carpenter, sailor, instructor, sheriff, pilot, inspector, mason, baker, administrator, architect, collector, operator, surgeon, driver, painter, conductor, nurse, cook, engineer, retired, sales, lawyer, clergy, physician, farmer, clerk, manager, guard, artist, smith, official, police, doctor, professor, student, judge, teacher, author, secretary, soldier

Quantifying embedding bias

Group 1 words Mean vector: v_{1}

Group 2 words Mean vector: v_{2}
he, son, his, him, father, man, boy, himself, male, brother, sons, fathers, men, boys, males, brothers, uncle, uncles, nephew, nephews
she, daughter, hers, her, mother, woman, girl, herself, female, sister, daughters, mothers, women, girls, females, sisters, aunt, aunts, niece, nieces
janitor, statistician, midwife, bailiff, auctioneer, photographer, geologist, shoemaker, athlete, cashier, dancer, housekeeper, accountant, physicist, gardener, dentist, weaver, blacksmith, psychologist, supervisor, mathematician, surveyor, tailor, designer, economist, mechanic, laborer, postmaster, broker, chemist, librarian, attendant, clerical, musician, porter, scientist, carpenter, sailor, instructor, sheriff, pilot, inspector, mason, baker, administrator, architect, collector, operator, surgeon, driver, painter, conductor, nurse, cook, engineer, retired, sales, lawyer, clergy, physician, farmer, clerk, manager, guard, artist, smith, official, police, doctor, professor, student, judge, teacher, author, secretary, soldier

Quantifying embedding bias

Group 1 words Mean vector: v_{1}

Group 2 words Mean vector: v_{2}

Group "M" words

$\left\{w_{m}\right\}$
he, son, his, him, father, man, boy, himself, male, brother, sons, fathers, men, boys, males, brothers, uncle, uncles, nephew, nephews
she, daughter, hers, her, mother, woman, girl, herself, female, sister, daughters, mothers, women, girls, females, sisters, aunt, aunts, niece, nieces
janitor, statistician, midwife, bailiff, auctioneer, photographer, geologist, shoemaker, athlete, cashier, dancer, housekeeper, accountant, physicist, gardener, dentist, weaver, blacksmith, psychologist, supervisor, mathematician, surveyor, tailor, designer, economist, mechanic, laborer, postmaster, broker, chemist, librarian, attendant, clerical, musician, porter, scientist, carpenter, sailor, instructor, sheriff, pilot, inspector, mason, baker, administrator, architect, collector, operator, surgeon, driver, painter, conductor, nurse, cook, engineer, retired, sales, lawyer, clergy, physician, farmer, clerk, manager, guard, artist, smith, official, police, doctor, professor, student, judge, teacher, author, secretary, soldier

Quantifying embedding bias

Group 1 words Mean vector: v_{1}

Group 2 words Mean vector: v_{2}
he, son, his, him, father, man, boy, himself, male, brother, sons, fathers, men, boys, males, brothers, uncle, uncles, nephew, nephews
she, daughter, hers, her, mother, woman, girl, herself, female, sister, daughters, mothers, women, girls, females, sisters, aunt, aunts, niece, nieces
janitor, statistician, midwife, bailiff, auctioneer, photographer, geologist, shoemaker, athlete, cashier, dancer, housekeeper, accountant, physicist, gardener, dentist, weaver, blacksmith, psychologist, supervisor, mathematician, surveyor, tailor, designer, economist, mechanic, laborer, postmaster, broker, chemist, librarian, attendant, clerical, musician, porter, scientist, carpenter, sailor, instructor, sheriff, pilot, inspector, mason, baker, administrator, architect, collector, operator, surgeon, driver, painter, conductor, nurse, cook, engineer, retired, sales, lawyer, clergy, physician, farmer, clerk, manager, guard, artist, smith, official, police, doctor, professor, student, judge, teacher, author, secretary, soldier

$$
\operatorname{Gender} \operatorname{Bias}\left(w_{m}\right)=\operatorname{Dist}\left(v_{1}, w_{m}\right)-\operatorname{Dist}\left(v_{2}, w_{m}\right)
$$

Word embeddings vs. ground truth

(Garg et al., 2018)

Tracking bias over time

Tracking bias over time

Group 1 words baptism, messiah, catholicism, resurrection, christianity, salvation, protestant, gospel, trinity, jesus, christ, christian, cross, catholic, church

Tracking bias over time

Group 1 words baptism, messiah, catholicism, resurrection, christianity, salvation, protestant, gospel, trinity, jesus, christ, christian, cross, catholic, church
Group 2 words allah, ramadan, turban, emir, salaam, sunni, koran, imam, sultan, prophet, veil, ayatollah, shiite, mosque, islam, sheik, muslim, muhammad

Tracking bias over time

Group 1 words baptism, messiah, catholicism, resurrection, christianity, salvation, protestant, gospel, trinity, jesus, christ, christian, cross, catholic, church
Group 2 words allah, ramadan, turban, emir, salaam, sunni, koran, imam, sultan, prophet, veil, ayatollah, shiite, mosque, islam, sheik, muslim, muhammad

Group "M" words
terror, terrorism, violence, attack, death, military, war, radical, injuries, bomb, target, conflict, dangerous, kill, murder, strike, dead, violence, fight, death, force, stronghold, wreckage, aggression, slaughter, execute, overthrow, casualties, massacre, retaliation, proliferation, militia, hostility, debris, acid, execution, militant, rocket, guerrilla, sacrifice, enemy, soldier, terrorist, missile, hostile, revolution, resistance, shoot

Tracking bias over time

Group 1 words	baptism, messiah, catholicism, resurrection, christianity, Mean vector: v_{1} salvation, protestant, gospel, trinity, jesus, christ, christian, Gross, catholic, church
Grords	allah, ramadan, turban, emir, salaam, sunni, koran, imam, sultan, prophet, veil, ayatollah, shiite, mosque, islam, sheik, muslim, muhammad
Group "M" words	terror, terrorism, violence, attack, death, military, war, radical, injuries, bomb, target, conflict, dangerous, kill, murder, strike, dead, violence, fight, death, force, stronghold, wreckage, aggression, slaughter, execute, overthrow, casualties, massacre, retaliation, proliferation, militia, hostility, debris, acid, execution, militant, rocket, guerrilla, sacrifice, enemy, soldier, terrorist, missile, hostile, revolution, resistance, shoot

Tracking bias over time

Group 1 words	baptism, messiah, catholicism, resurrection, christianity, Mean vector: v_{1} salvation, protestant, gospel, trinity, jesus, christ, christian, cross, catholic, church
Mean wector: v_{2}	allah, ramadan, turban, emir, salaam, sunni, koran, imam, sultan, prophet, veil, ayatollah, shiite, mosque, islam, sheik, muslim, muhammad
Group "M" words	terror, terrorism, violence, attack, death, military, war, radical, injuries, bomb, target, conflict, dangerous, kill, murder, strike, dead, violence, fight, death, force, stronghold, wreckage, aggression, slaughter, execute, overthrow, casualties, massacre, retaliation, proliferation, militia, hostility, debris, acid, execution, militant, rocket, guerrilla, sacrifice, enemy, soldier, terrorist, missile, hostile, revolution, resistance, shoot

Tracking bias over time

Group 1 words Mean vector: v_{1}

Group 2 words Mean vector: v_{2}
baptism, messiah, catholicism, resurrection, christianity, salvation, protestant, gospel, trinity, jesus, christ, christian, cross, catholic, church
allah, ramadan, turban, emir, salaam, sunni, koran, imam, sultan, prophet, veil, ayatollah, shiite, mosque, islam, sheik, muslim, muhammad

Group "M" words $\left\{w_{m}\right\}$
terror, terrorism, violence, attack, death, military, war, radical, injuries, bomb, target, conflict, dangerous, kill, murder, strike, dead, violence, fight, death, force, stronghold, wreckage, aggression, slaughter, execute, overthrow, casualties, massacre, retaliation, proliferation, militia, hostility, debris, acid, execution, militant, rocket, guerrilla, sacrifice, enemy, soldier, terrorist, missile, hostile, revolution, resistance, shoot

Tracking bias over time

Group 1 words baptism, messiah, catholicism, resurrection, christianity, Mean vector: v_{1}

Group 2 words Mean vector: v_{2} salvation, protestant, gospel, trinity, jesus, christ, christian, cross, catholic, church

Group "M" words $\left\{w_{m}\right\}$
allah, ramadan, turban, emir, salaam, sunni, koran, imam, sultan, prophet, veil, ayatollah, shiite, mosque, islam, sheik, muslim, muhammad
terror, terrorism, violence, attack, death, military, war, radical, injuries, bomb, target, conflict, dangerous, kill, murder, strike, dead, violence, fight, death, force, stronghold, wreckage, aggression, slaughter, execute, overthrow, casualties, massacre, retaliation, proliferation, militia, hostility, debris, acid, execution, militant, rocket, guerrilla, sacrifice, enemy, soldier, terrorist, missile, hostile, revolution, resistance, shoot

$$
\text { Overall Bias }=\sum \operatorname{Dist}\left(v_{1}, w_{m}\right)-\operatorname{Dist}\left(v_{2}, w_{m}\right)
$$

Tracking bias over time

An alternative bias-quantifying method

An alternative bias-quantifying method

Group 1 words
he, son, his, him, father, man, boy, himself, male, brother, sons, fathers, men, boys, males, brothers, uncle, uncles, nephew, nephews

An alternative bias-quantifying method

Group 1 words he, son, his, him, father, man, boy, himself, male, brother, sons, fathers, men, boys, males, brothers, uncle, uncles, nephew, nephews
Group 2 words she, daughter, hers, her, mother, woman, girl, herself, female, sister, daughters, mothers, women, girls, females, sisters, aunt, aunts, niece, nieces

An alternative bias-quantifying method

Group 1 words
he, son, his, him, father, man, boy, himself, male, brother, sons, fathers, men, boys, males, brothers, uncle, uncles, nephew, nephews

Group 2 words
she, daughter, hers, her, mother, woman, girl, herself, female, sister, daughters, mothers, women, girls, females, sisters, aunt, aunts, niece, nieces

Group A words career, office, salary, ...

An alternative bias-quantifying method

Group 1 words

Group 2 words
she, daughter, hers, her, mother, woman, girl, herself, female, sister, daughters, mothers, women, girls, females, sisters, aunt, aunts, niece, nieces

Group A words career, office, salary, ...

An alternative bias-quantifying method

Group 1 words

Group 2 words
$\left\{w_{2}\right\}$

Group A words career, office, salary, ...

An alternative bias-quantifying method

Group 1 words

Group 2 words
$\left\{w_{2}\right\}$

Group A words career, office, salary, ... nephews aunts, niece, nieces
he, son, his, him, father, man, boy, himself, male, brother, sons, fathers, men, boys, males, brothers, uncle, uncles, nephew,
she, daughter, hers, her, mother, woman, girl, herself, female, sister, daughters, mothers, women, girls, females, sisters, aunt,

An alternative bias-quantifying method

Group 1 words

Group 2 words
$\left\{w_{2}\right\}$

Group A words career, office, salary, ...
$\left\{w_{A}\right\}$
Group B words family, home, children, ...

An alternative bias-quantifying method

Group 1 words

Group 2 words
$\left\{w_{2}\right\}$

Group A words career, office, salary, ...
$\left\{w_{A}\right\}$
Group B words family, home, children, ... nephews aunts, niece, nieces
he, son, his, him, father, man, boy, himself, male, brother, sons, fathers, men, boys, males, brothers, uncle, uncles, nephew,
she, daughter, hers, her, mother, woman, girl, herself, female, sister, daughters, mothers, women, girls, females, sisters, aunt,

An alternative bias-quantifying method

Group 1 words

Group 2 words
$\left\{w_{2}\right\}$

Group A words career, office, salary, ...
$\left\{w_{A}\right\}$
Group B words family, home, children, ...
$\left\{w_{B}\right\}$ nephews aunts, niece, nieces
he, son, his, him, father, man, boy, himself, male, brother, sons, fathers, men, boys, males, brothers, uncle, uncles, nephew,
she, daughter, hers, her, mother, woman, girl, herself, female, sister, daughters, mothers, women, girls, females, sisters, aunt,

Overall Bias:
Average ${ }_{w_{1}, w_{2}, w_{A}, w_{B}}\left[\operatorname{Dist}\left(v_{1}, w_{A}\right)-\operatorname{Dist}\left(v_{2}, w_{A}\right)-\operatorname{Dist}\left(v_{1}, w_{B}\right)+\operatorname{Dist}\left(v_{2}, w_{B}\right)\right]$

An alternative bias-quantifying method

Group 1 words $\left\{w_{1}\right\}$

Group 2 words
$\left\{w_{2}\right\}$

Group A words career, office, salary, ...
$\left\{w_{A}\right\}$
Group B words family, home, children, ...
$\left\{w_{B}\right\}$ nephews aunts, niece, nieces
he, son, his, him, father, man, boy, himself, male, brother, sons, fathers, men, boys, males, brothers, uncle, uncles, nephew,
she, daughter, hers, her, mother, woman, girl, herself, female, sister, daughters, mothers, women, girls, females, sisters, aunt,

Overall Bias:
Average ${ }_{w_{1}, w_{2}, w_{A}, w_{B}}\left[\operatorname{Dist}\left(v_{1}, w_{A}\right)-\operatorname{Dist}\left(v_{2}, w_{A}\right)-\operatorname{Dist}\left(v_{1}, w_{B}\right)+\operatorname{Dist}\left(v_{2}, w_{B}\right)\right]$
GloVe cosine similarities:
career children
woman $0.29 \quad 0.42$
(Caliskan et al., 2017; "WEFAT")
man
0.32
0.27

WEFAT Results

(Caliskan et al., 2017)

WEFAT results: many stereotypes

Target words	Attribute words	Original finding				Our finding			
		Ref.	N	d	\boldsymbol{P}	$\mathrm{N}_{\text {T }}$	$\mathrm{N}_{\text {A }}$	d	P
Flowers vs. insects	Pleasant vs. unpleasant	(5)	32	1.35	10^{-8}	25×2	25×2	1.50	10^{-7}
Instruments vs. weapons	Pleasant vs. unpleasant	(5)	32	1.66	10^{-10}	25×2	25×2	1.53	10^{-7}
European-American vs. African-American names	Pleasant vs. unpleasant	(5)	26	1.17	10^{-5}	32×2	25×2	1.41	10^{-8}
European-American vs. African-American names	Pleasant vs. unpleasant from (5)	(7)	Not applicable			16×2	25×2	1.50	10^{-4}
European-American vs. African-American names	Pleasant vs. unpleasant from (9)	(7)	Not applicable			16×2	8×2	1.28	10^{-3}
Male vs. female names	Career vs. family	(9)	39 k	0.72	$<10^{-2}$	8×2	8×2	1.81	10^{-3}
Math vs. arts	Male vs. female terms	(9)	28 k	0.82	$<10^{-2}$	8×2	8×2	1.06	. 018
Science vs. arts	Male vs. female terms	(10)	91	1.47	10^{-24}	8×2	8×2	1.24	10^{-2}
Mental vs. physical disease	Temporary vs. permanent	(23)	135	1.01	10^{-3}	6×2	7×2	1.38	10^{-2}
Young vs. old people's names	Pleasant vs. unpleasant	(9)	43 k	1.42	$<10^{-2}$	8×2	8×2	1.21	10^{-2}

Summary

Summary

- Embed size- V vocabulary in a D-dimensional space; $D \ll V$

Summary

- Embed size- V vocabulary in a D-dimensional space; $D \ll V$
- Word embedding representations are dense numeric vectors

Summary

- Embed size- V vocabulary in a D-dimensional space; $D \ll V$
- Word embedding representations are dense numeric vectors
- Embeddings are learned to predict word--word co-occurrence statistics in large corpora

Summary

- Embed size- V vocabulary in a D-dimensional space; $D \ll V$
- Word embedding representations are dense numeric vectors
- Embeddings are learned to predict word--word co-occurrence statistics in large corpora
- Because the distributional hypothesis holds, a word's embedding representation reflects features of its meaning

Summary

- Embed size- V vocabulary in a D-dimensional space; $D \ll V$
- Word embedding representations are dense numeric vectors
- Embeddings are learned to predict word--word co-occurrence statistics in large corpora
- Because the distributional hypothesis holds, a word's embedding representation reflects features of its meaning
- Words with similar meanings are closer in embedding space

Summary

- Embed size- V vocabulary in a D-dimensional space; $D \ll V$
- Word embedding representations are dense numeric vectors
- Embeddings are learned to predict word--word co-occurrence statistics in large corpora
- Because the distributional hypothesis holds, a word's embedding representation reflects features of its meaning
- Words with similar meanings are closer in embedding space
- Perhaps remarkably, many features of word meaning turn out to be linearly separable in the embedding space

Summary

- Embed size- V vocabulary in a D-dimensional space; $D \ll V$
- Word embedding representations are dense numeric vectors
- Embeddings are learned to predict word--word co-occurrence statistics in large corpora
- Because the distributional hypothesis holds, a word's embedding representation reflects features of its meaning
- Words with similar meanings are closer in embedding space
- Perhaps remarkably, many features of word meaning turn out to be linearly separable in the embedding space
- This enables embedding-based analogical reasoning

Summary

- Embed size- V vocabulary in a D-dimensional space; $D \ll V$
- Word embedding representations are dense numeric vectors
- Embeddings are learned to predict word--word co-occurrence statistics in large corpora
- Because the distributional hypothesis holds, a word's embedding representation reflects features of its meaning
- Words with similar meanings are closer in embedding space
- Perhaps remarkably, many features of word meaning turn out to be linearly separable in the embedding space
- This enables embedding-based analogical reasoning
- Since corpus statistics reflect the world, word embeddings implicitly encode biases

Summary

- Embed size- V vocabulary in a D-dimensional space; $D \ll V$
- Word embedding representations are dense numeric vectors
- Embeddings are learned to predict word--word co-occurrence statistics in large corpora
- Because the distributional hypothesis holds, a word's embedding representation reflects features of its meaning
- Words with similar meanings are closer in embedding space
- Perhaps remarkably, many features of word meaning turn out to be linearly separable in the embedding space
- This enables embedding-based analogical reasoning
- Since corpus statistics reflect the world, word embeddings implicitly encode biases
- Open question: do these biases simply reflect information about the world, or does language present distorted representations of that information?

