# Introduction to language models

Roger Levy 9.19: Computational Psycholinguistics

#### Eyes awe of an

#### Eyes awe of an

#### I saw a van

#### The sail of a boat

# The sail of a boat

#### The sale of a boat

#### It's not easy to wreck an ice beach

It's not easy to wreck an ice beach

It's not easy to wreck a nice beach

It's not easy to wreck an ice beach It's not easy to wreck a nice beach

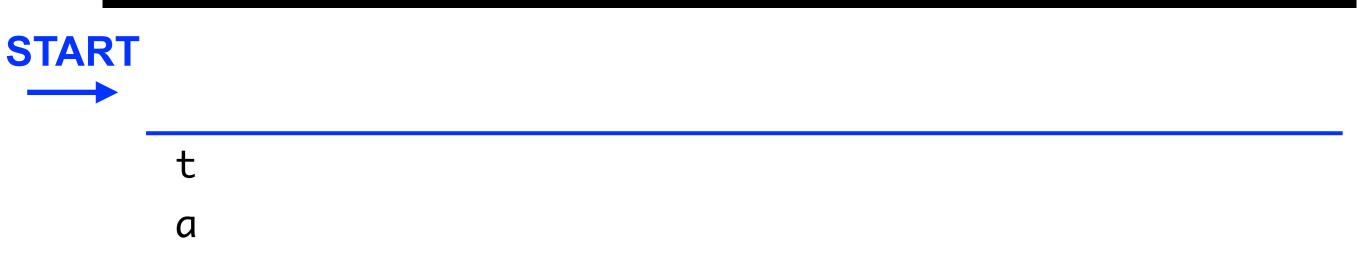
It's not easy to recognize speech

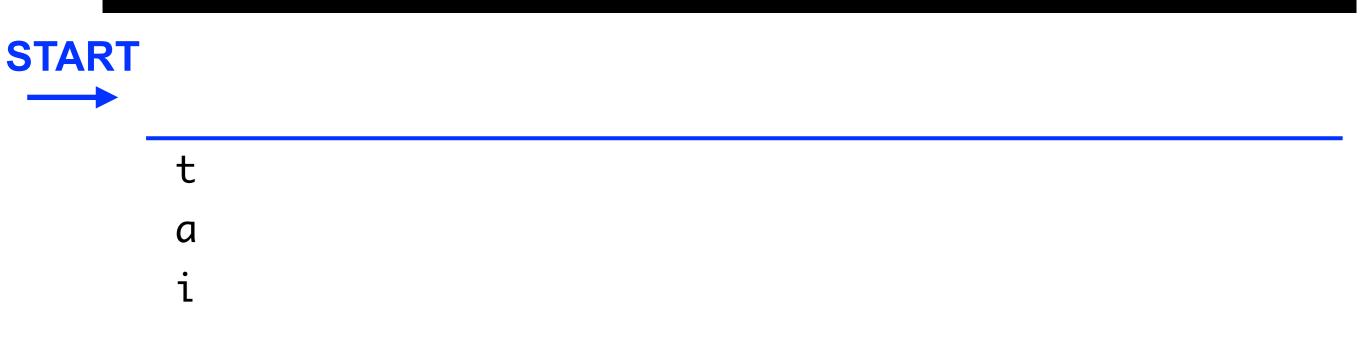
## A dog's tale

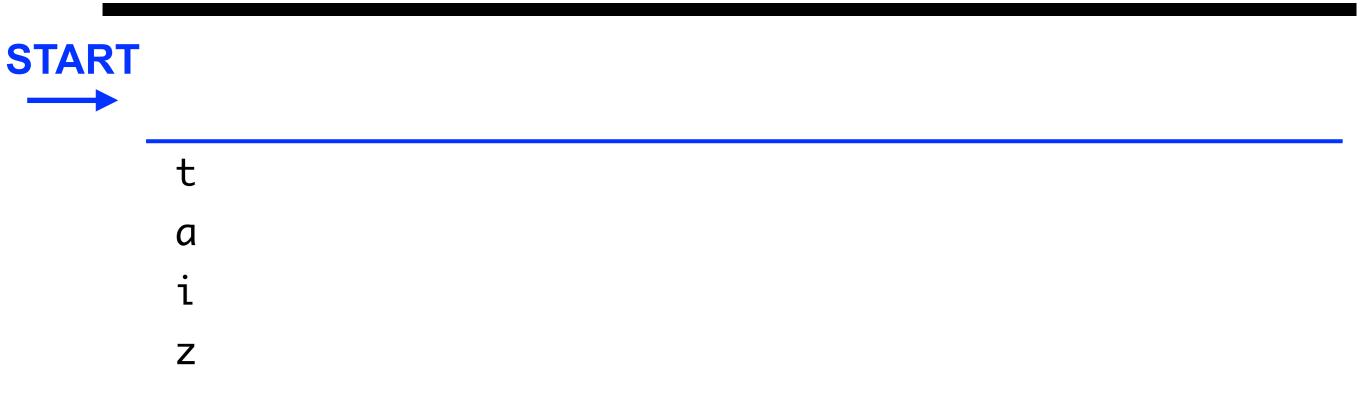
## A dog's tail

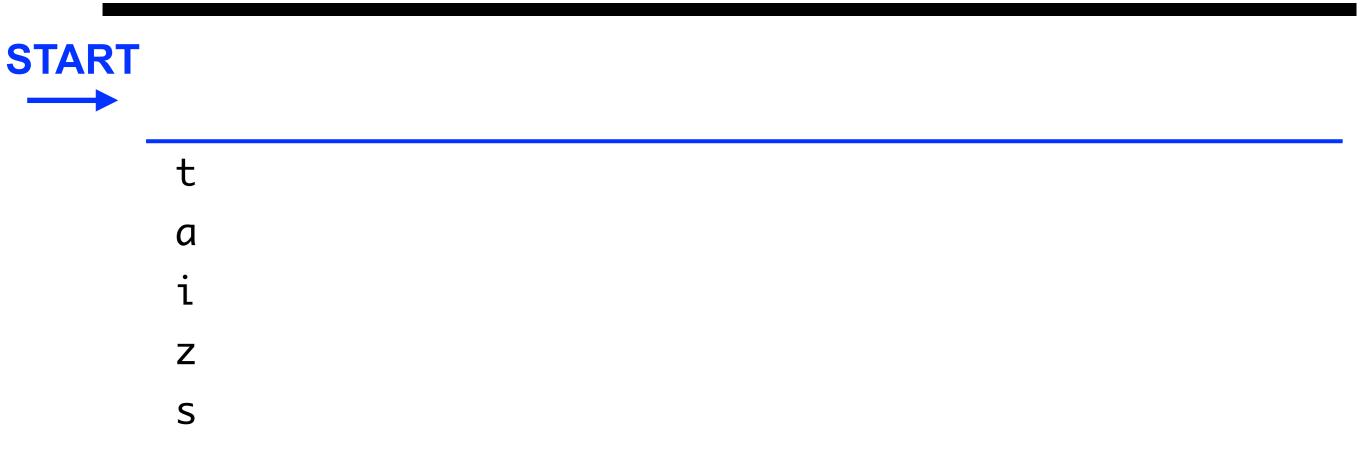
#### START

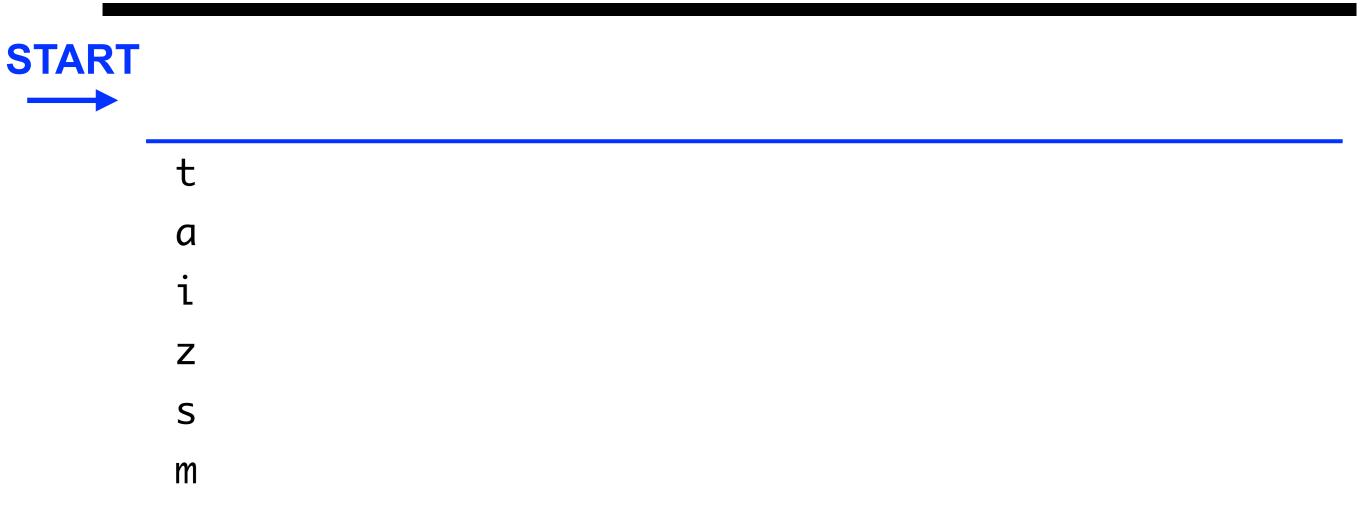


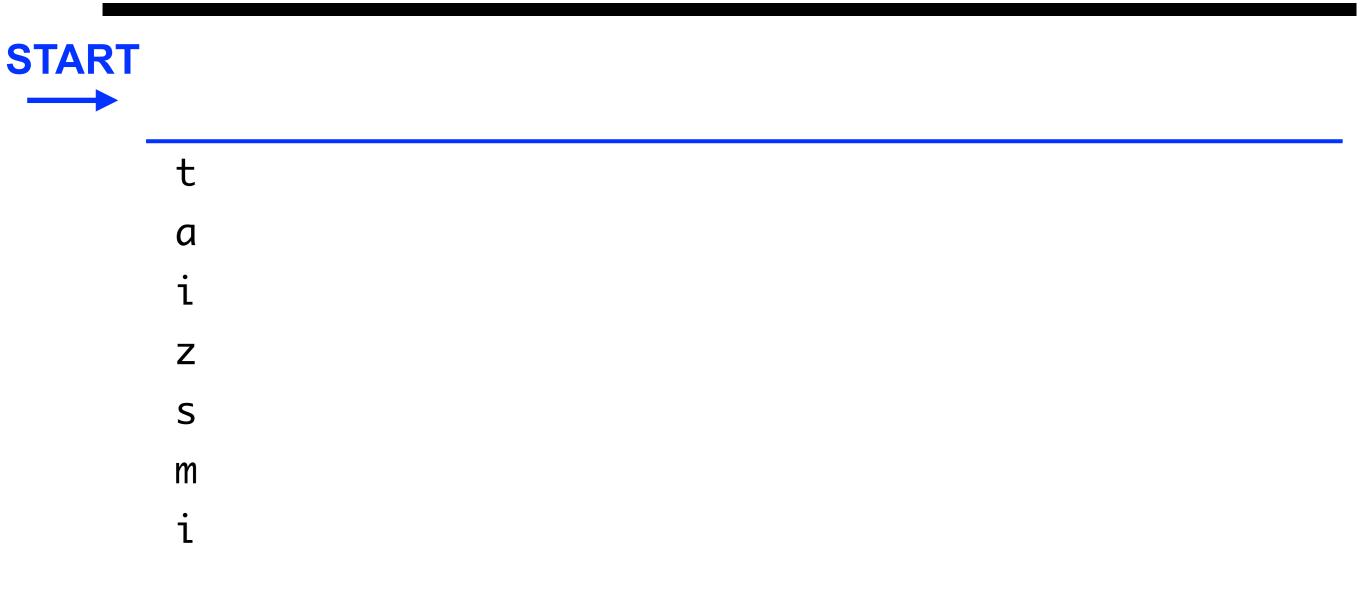


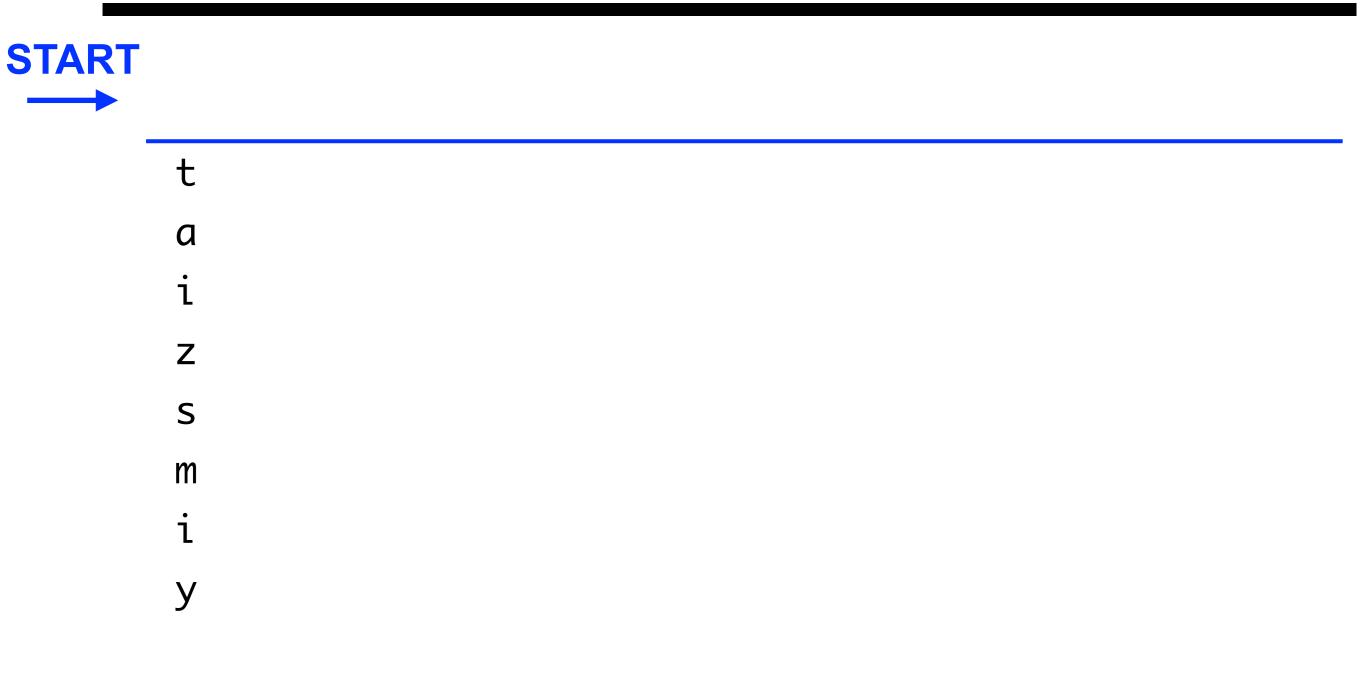


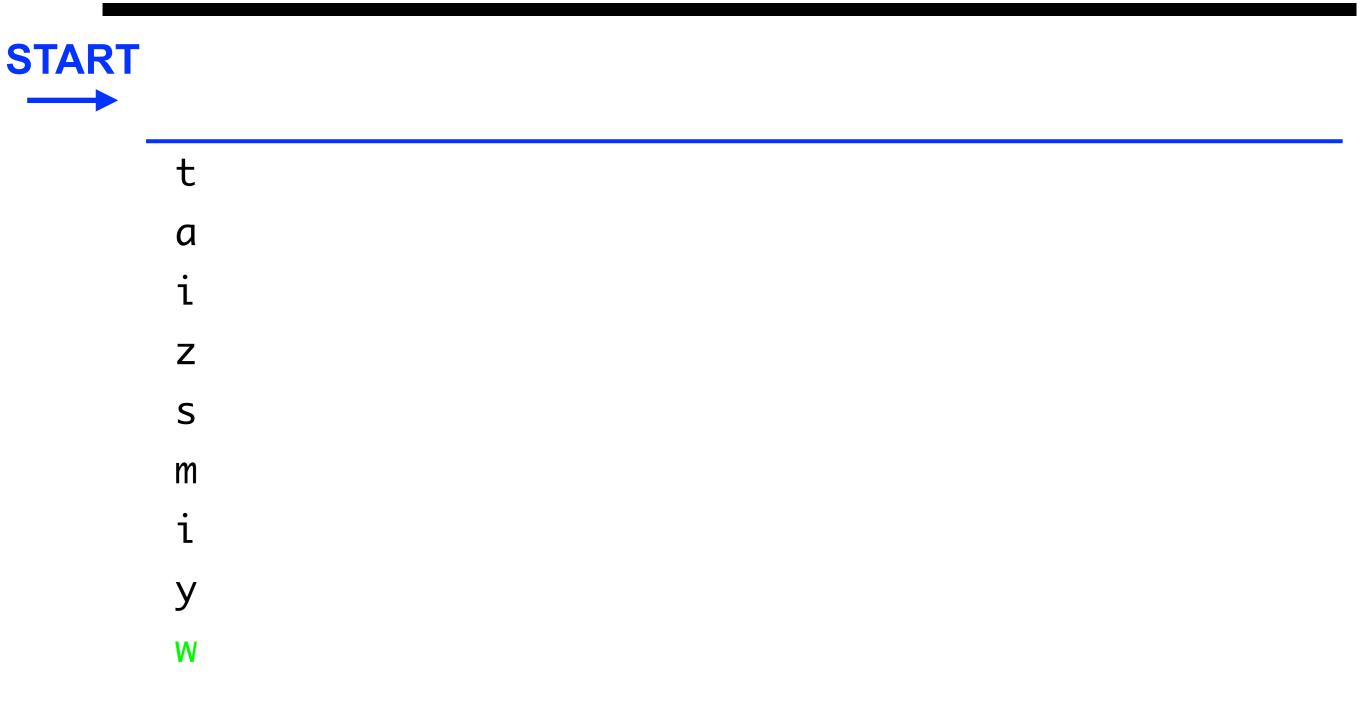


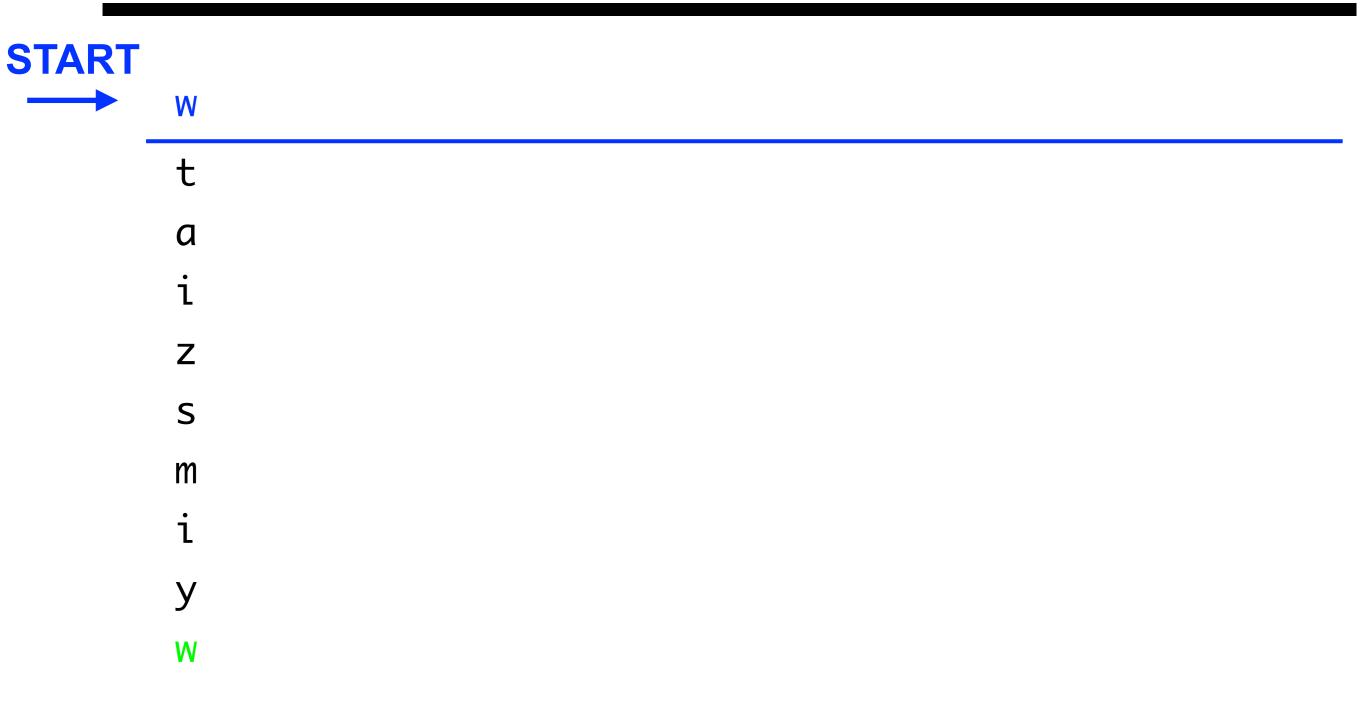


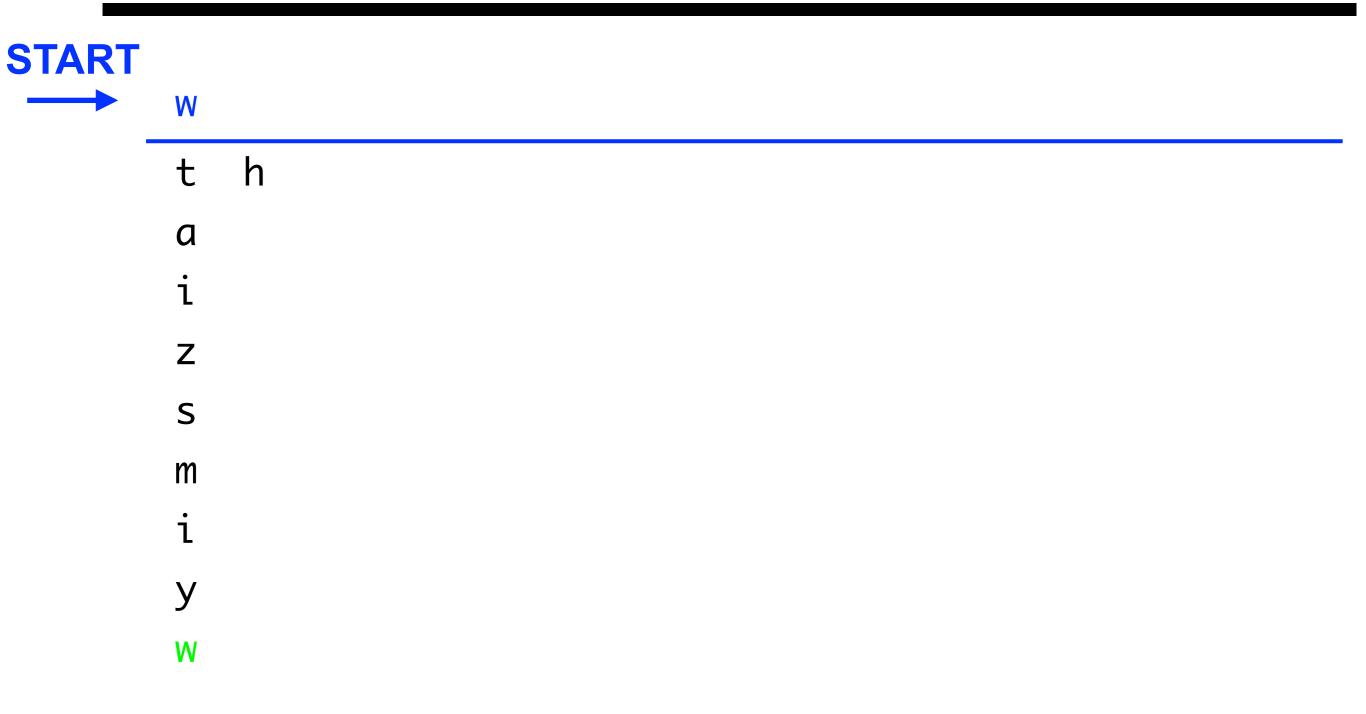








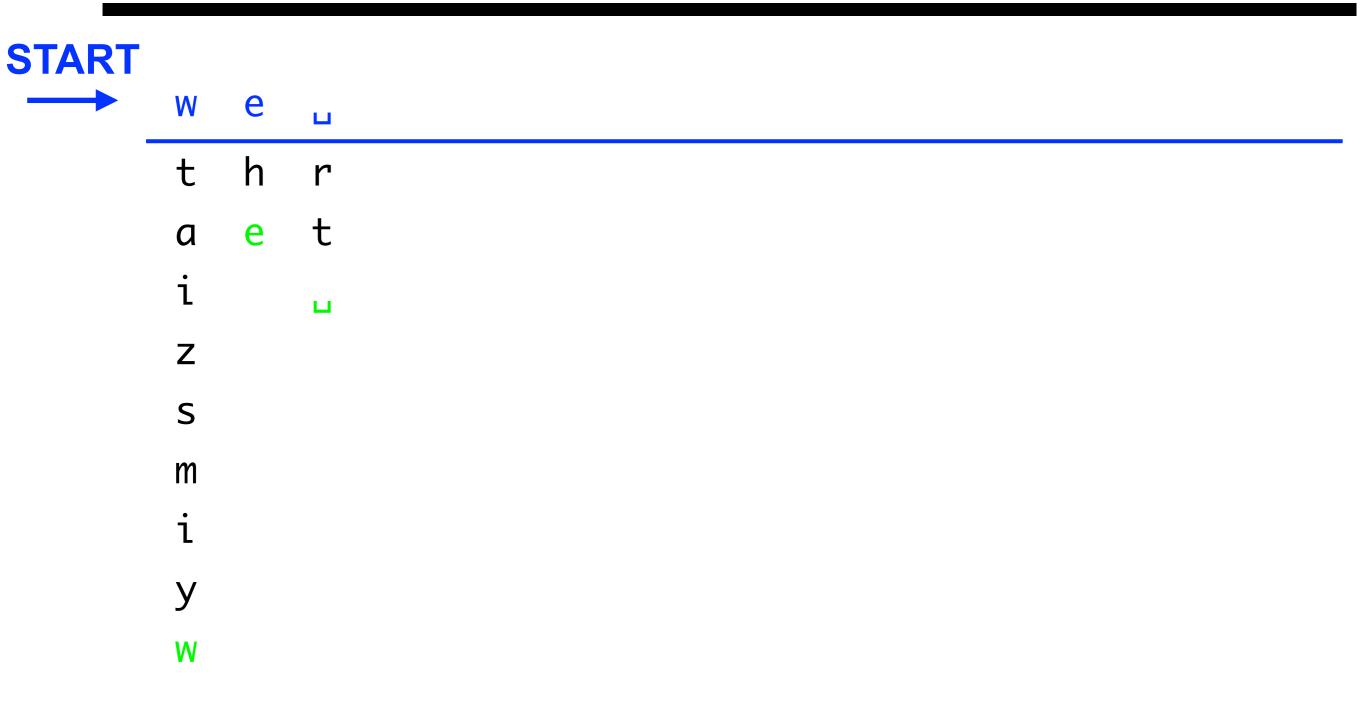


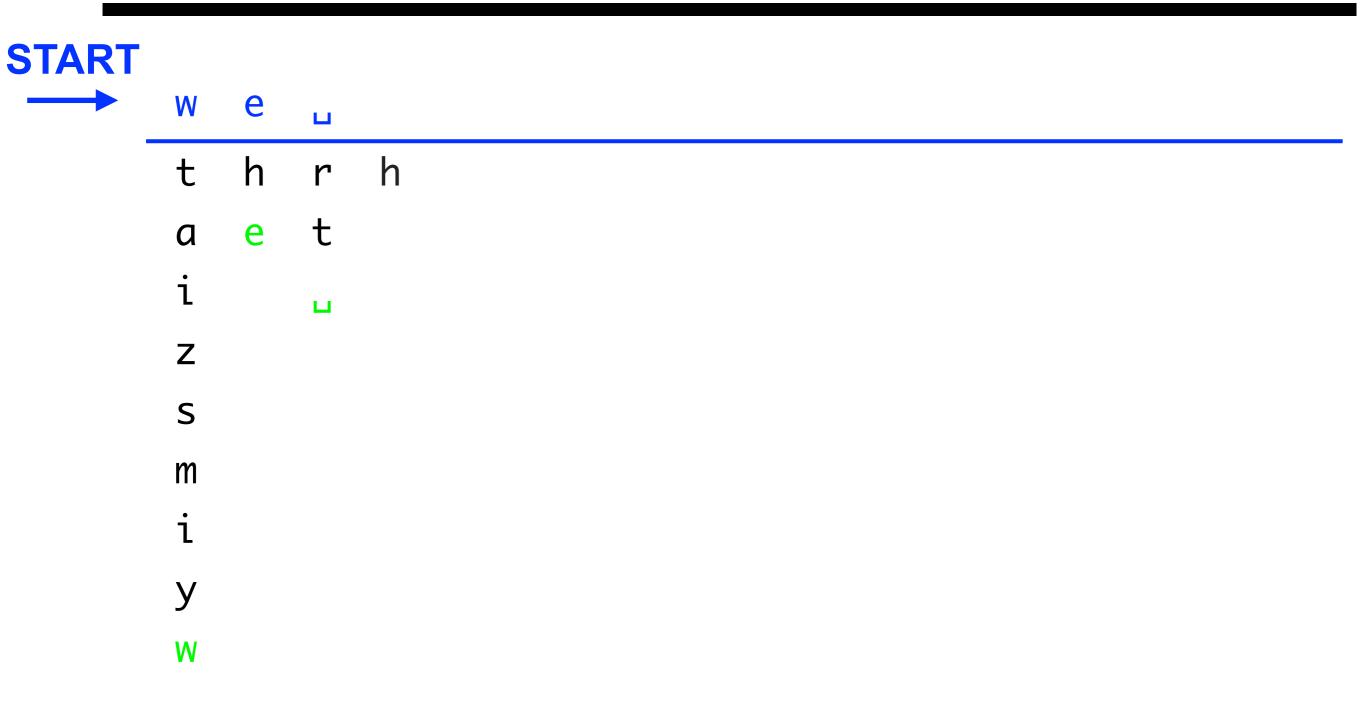


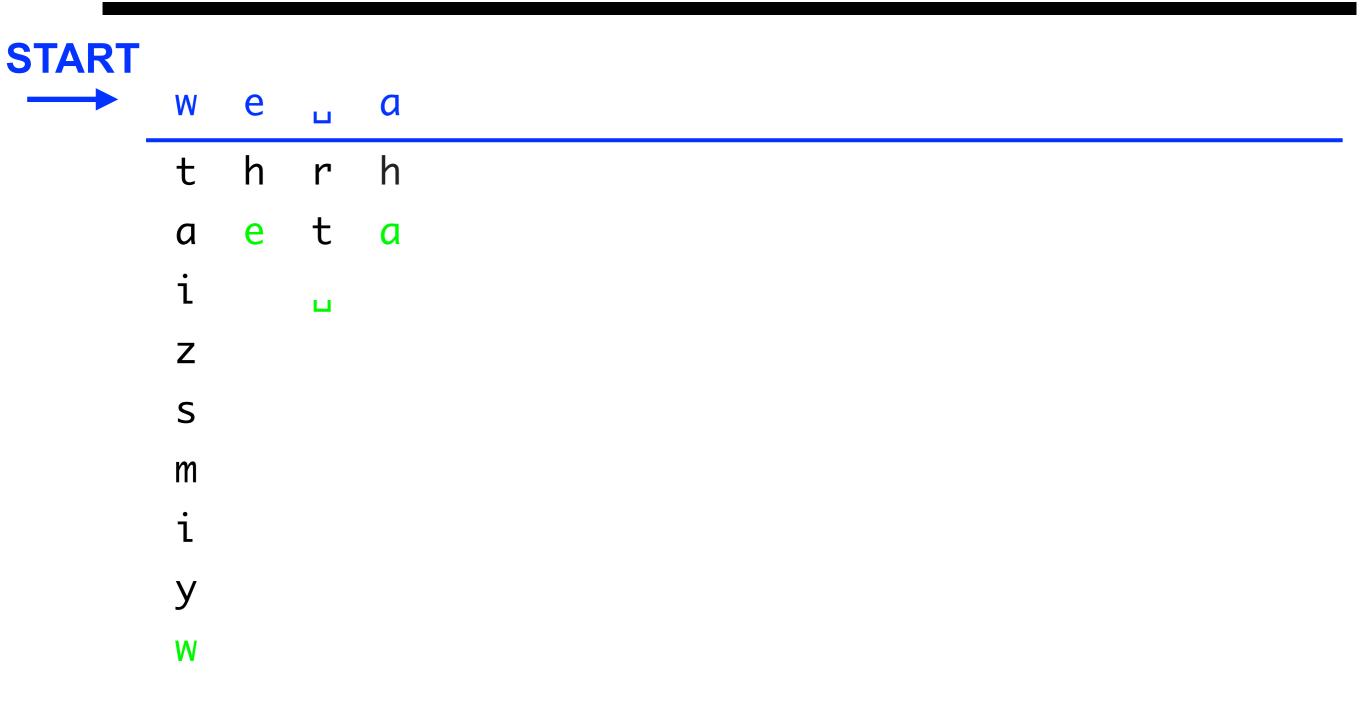
| START<br>w e<br>t h |  |
|---------------------|--|
| t h                 |  |
|                     |  |
| a e                 |  |
| i                   |  |
| Ζ                   |  |
| S                   |  |
| m                   |  |
| i                   |  |
| У                   |  |
| W                   |  |

| W | е                                    |                                       |                                                                |
|---|--------------------------------------|---------------------------------------|----------------------------------------------------------------|
| t | h                                    | r                                     |                                                                |
| а | e                                    |                                       |                                                                |
| i |                                      |                                       |                                                                |
| Z |                                      |                                       |                                                                |
| S |                                      |                                       |                                                                |
| m |                                      |                                       |                                                                |
| i |                                      |                                       |                                                                |
| У |                                      |                                       |                                                                |
| W |                                      |                                       |                                                                |
|   | t<br>a<br>i<br>z<br>s<br>m<br>i<br>y | t h<br>a e<br>i J<br>s<br>m<br>i<br>y | t h r<br>a e<br>i · · · ·<br>z · · ·<br>s<br>m<br>i · · ·<br>y |

| START |   |   |   |      |      |  |
|-------|---|---|---|------|------|--|
|       | W | е |   | <br> | <br> |  |
|       | t | h | r |      |      |  |
|       | а | е | t |      |      |  |
|       | i |   |   |      |      |  |
|       | Ζ |   |   |      |      |  |
|       | S |   |   |      |      |  |
|       | m |   |   |      |      |  |
|       | i |   |   |      |      |  |
|       | У |   |   |      |      |  |
|       | W |   |   |      |      |  |
|       |   |   |   |      |      |  |







#### **START**

| W | e | ш  | a | r |
|---|---|----|---|---|
| t | h | r  | h | r |
| а | е | t  | а |   |
| i |   | ц. |   |   |
| Ζ |   |    |   |   |
| S |   |    |   |   |
| m |   |    |   |   |
| i |   |    |   |   |
| У |   |    |   |   |
| W |   |    |   |   |
|   |   |    |   |   |

#### **START**

| <br>W | е | ш | a | r | е |  |
|-------|---|---|---|---|---|--|
| t     | h | r | h | r | е |  |
| а     | e | t | а |   |   |  |
| i     |   |   |   |   |   |  |
| Ζ     |   |   |   |   |   |  |
| S     |   |   |   |   |   |  |
| m     |   |   |   |   |   |  |
| i     |   |   |   |   |   |  |
| У     |   |   |   |   |   |  |
| W     |   |   |   |   |   |  |
|       |   |   |   |   |   |  |

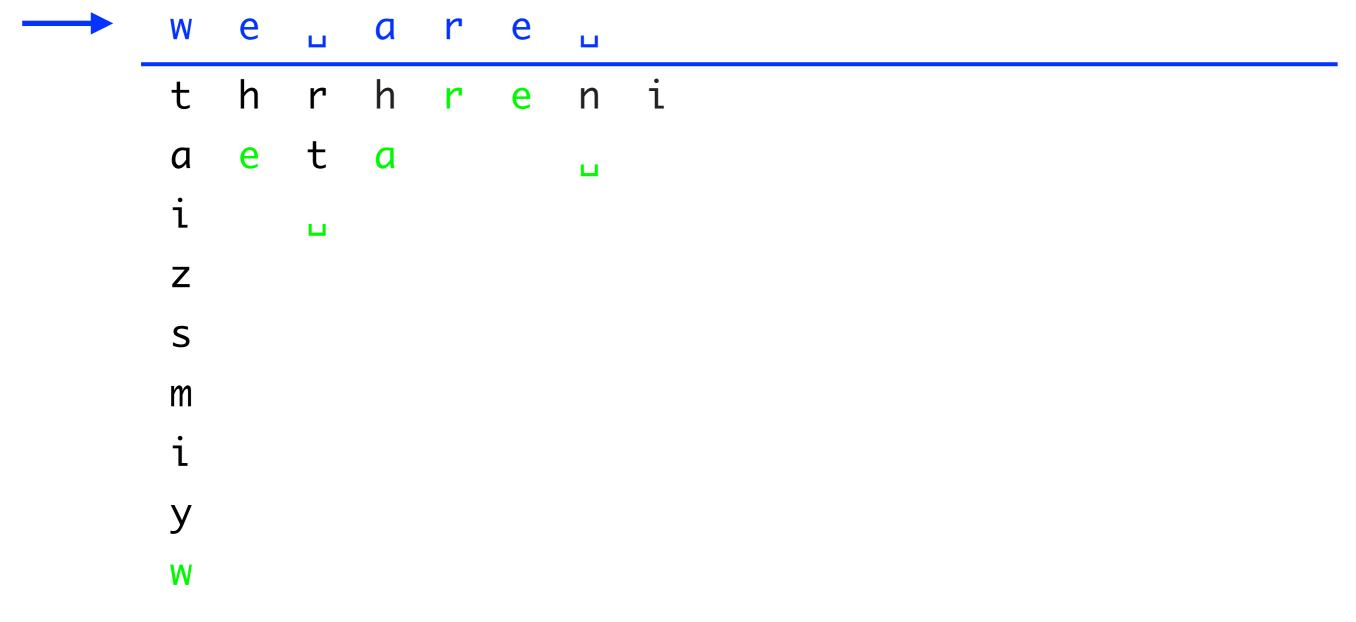
#### **START**

| W | е | ш | a | r | е |   |
|---|---|---|---|---|---|---|
| t | h | r | h | r | е | n |
| а | е | t | а |   |   |   |
| i |   |   |   |   |   |   |
| Ζ |   |   |   |   |   |   |
| S |   |   |   |   |   |   |
| m |   |   |   |   |   |   |
| i |   |   |   |   |   |   |
| У |   |   |   |   |   |   |
| W |   |   |   |   |   |   |
|   |   |   |   |   |   |   |

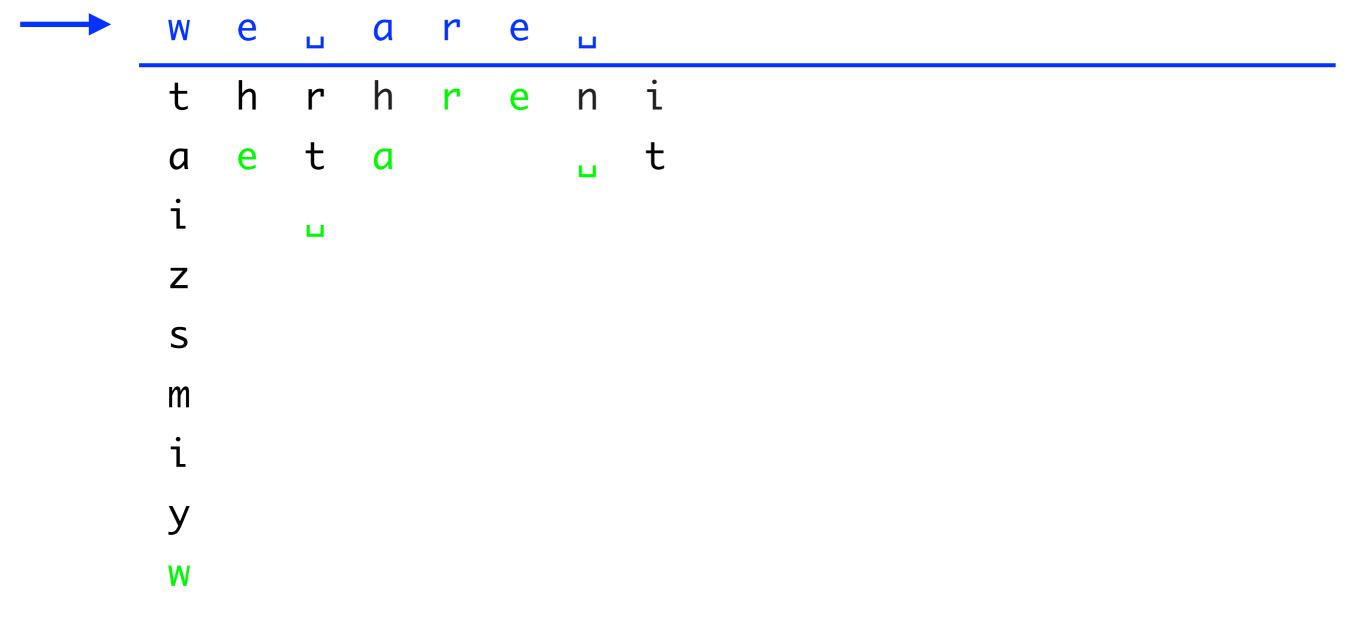
#### **START**

| W | е | ц  | a | r | е | ш  |  |  |
|---|---|----|---|---|---|----|--|--|
| t | h | r  | h | r | е | n  |  |  |
| а | е | t  | а |   |   | u. |  |  |
| i |   | ц. |   |   |   |    |  |  |
| Ζ |   |    |   |   |   |    |  |  |
| S |   |    |   |   |   |    |  |  |
| m |   |    |   |   |   |    |  |  |
| i |   |    |   |   |   |    |  |  |
| У |   |    |   |   |   |    |  |  |
| W |   |    |   |   |   |    |  |  |
|   |   |    |   |   |   |    |  |  |

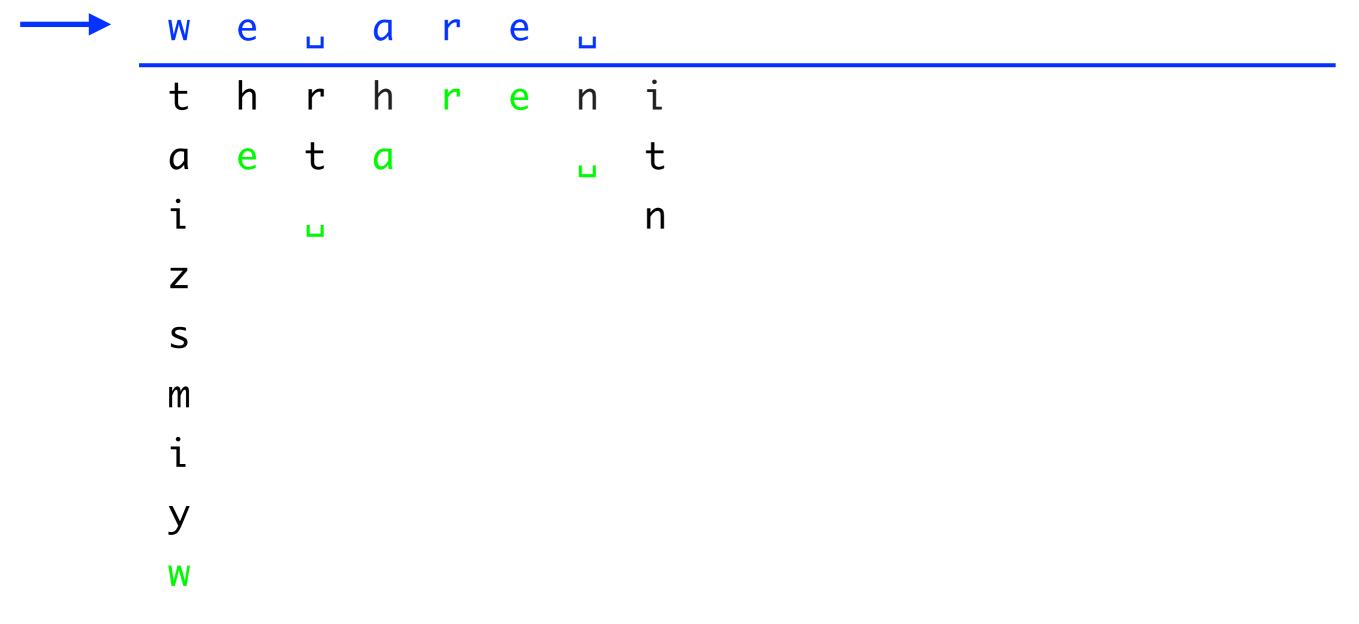
#### **START**



#### **START**



#### **START**



#### **START**

| W | е | ш  | a | r | е | ш  |   |
|---|---|----|---|---|---|----|---|
| t | h | r  | h | r | е | n  | i |
| а | e | t  | а |   |   | ц. | t |
| i |   | υ. |   |   |   |    | n |
| Ζ |   |    |   |   |   |    | g |
| S |   |    |   |   |   |    |   |
| m |   |    |   |   |   |    |   |
| i |   |    |   |   |   |    |   |
| У |   |    |   |   |   |    |   |
| W |   |    |   |   |   |    |   |
|   |   |    |   |   |   |    |   |

#### **START**

| W | е | ц | a | r | е | ш |   |
|---|---|---|---|---|---|---|---|
| t | h | r | h | r | е | n | i |
| а | е | t | а |   |   |   | t |
| i |   | ц |   |   |   |   | n |
| Ζ |   |   |   |   |   |   | g |
| S |   |   |   |   |   |   | n |
| m |   |   |   |   |   |   |   |
| i |   |   |   |   |   |   |   |
| У |   |   |   |   |   |   |   |
| W |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |

#### **START**

| - | W | е | ш  | a | r | е | ш |   |  |  |  |
|---|---|---|----|---|---|---|---|---|--|--|--|
| • | t | h | r  | h | r | е | n | i |  |  |  |
|   | а | e | t  | а |   |   |   | t |  |  |  |
|   | i |   | u. |   |   |   |   | n |  |  |  |
|   | Ζ |   |    |   |   |   |   | g |  |  |  |
|   | S |   |    |   |   |   |   | n |  |  |  |
|   | m |   |    |   |   |   |   | а |  |  |  |
|   | i |   |    |   |   |   |   |   |  |  |  |
|   | У |   |    |   |   |   |   |   |  |  |  |
|   | W |   |    |   |   |   |   |   |  |  |  |
|   |   |   |    |   |   |   |   |   |  |  |  |

#### **START**

| W | e | ш | a | r | e | ш  |   |
|---|---|---|---|---|---|----|---|
| t | h | r | h | r | е | n  | i |
| а | e | t | а |   |   | υ. | t |
| i |   |   |   |   |   |    | n |
| Ζ |   |   |   |   |   |    | g |
| S |   |   |   |   |   |    | n |
| m |   |   |   |   |   |    | a |
| i |   |   |   |   |   |    | j |
| У |   |   |   |   |   |    |   |
| W |   |   |   |   |   |    |   |
|   |   |   |   |   |   |    |   |

#### **START**

#### **START**

| <br>W | е | ш | а | r | е | ш |   |
|-------|---|---|---|---|---|---|---|
| t     | h | r | h | r | е | n | i |
| а     | е | t | а |   |   |   | - |
| i     |   |   |   |   |   |   |   |
| Ζ     |   |   |   |   |   |   |   |
| S     |   |   |   |   |   |   | ľ |
| m     |   |   |   |   |   |   | 0 |
| i     |   |   |   |   |   |   | j |
| У     |   |   |   |   |   |   | t |
| W     |   |   |   |   |   |   | С |
|       |   |   |   |   |   |   |   |

#### **START**

| <br>W | e | ш  | a | r | е | ш |   |  |
|-------|---|----|---|---|---|---|---|--|
| t     | h | r  | h | r | е | n |   |  |
| а     | е | t  | а |   |   |   |   |  |
| i     |   | ц. |   |   |   |   |   |  |
| Ζ     |   |    |   |   |   |   | ļ |  |
| S     |   |    |   |   |   |   |   |  |
| m     |   |    |   |   |   |   | l |  |
| i     |   |    |   |   |   |   |   |  |
| У     |   |    |   |   |   |   |   |  |
| W     |   |    |   |   |   |   |   |  |
|       |   |    |   |   |   |   |   |  |

#### **START**

| $\rightarrow$ | W | е | ш  | a | r | е | ц | S |   |
|---------------|---|---|----|---|---|---|---|---|---|
|               | t | h | r  | h | r | е | n | i | 0 |
|               | а | е | t  | а |   |   |   | t |   |
|               | i |   | ц. |   |   |   |   | n |   |
|               | Ζ |   |    |   |   |   |   | g |   |
|               | S |   |    |   |   |   |   | n |   |
|               | m |   |    |   |   |   |   | а |   |
|               | i |   |    |   |   |   |   | j |   |
|               | У |   |    |   |   |   |   | t |   |
|               | W |   |    |   |   |   |   | С |   |
|               |   |   |    |   |   |   |   | S |   |

#### **START**

| W | e | ш | a | r | е | ц | S |   |  |  |  |  |
|---|---|---|---|---|---|---|---|---|--|--|--|--|
| t | h | r | h | r | е | n | i | 0 |  |  |  |  |
| а | е | t | а |   |   |   | t | i |  |  |  |  |
| i |   | ы |   |   |   |   | n |   |  |  |  |  |
| Ζ |   |   |   |   |   |   | g |   |  |  |  |  |
| S |   |   |   |   |   |   | n |   |  |  |  |  |
| m |   |   |   |   |   |   | а |   |  |  |  |  |
| i |   |   |   |   |   |   | j |   |  |  |  |  |
| У |   |   |   |   |   |   | t |   |  |  |  |  |
| W |   |   |   |   |   |   | С |   |  |  |  |  |
|   |   |   |   |   |   |   | S |   |  |  |  |  |

#### **START**

| <br>W | e | ш  | a | r | е | ц | S |   |  |  |  |
|-------|---|----|---|---|---|---|---|---|--|--|--|
| t     | h | r  | h | r | е | n | i | 0 |  |  |  |
| а     | e | t  | а |   |   |   | t | i |  |  |  |
| i     |   | μ. |   |   |   |   | n | а |  |  |  |
| Ζ     |   |    |   |   |   |   | g |   |  |  |  |
| S     |   |    |   |   |   |   | n |   |  |  |  |
| m     |   |    |   |   |   |   | а |   |  |  |  |
| i     |   |    |   |   |   |   | j |   |  |  |  |
| У     |   |    |   |   |   |   | t |   |  |  |  |
| W     |   |    |   |   |   |   | С |   |  |  |  |
|       |   |    |   |   |   |   | S |   |  |  |  |

#### **START**

| W | е | ш | a | r | е | ш | S |   |
|---|---|---|---|---|---|---|---|---|
| t | h | r | h | r | е | n | i | 0 |
| а | е | t | а |   |   |   | t | i |
| i |   |   |   |   |   |   | n | a |
| Ζ |   |   |   |   |   |   | g | h |
| S |   |   |   |   |   |   | n |   |
| m |   |   |   |   |   |   | а |   |
| i |   |   |   |   |   |   | j |   |
| У |   |   |   |   |   |   | t |   |
| W |   |   |   |   |   |   | С |   |
|   |   |   |   |   |   |   | S |   |

#### **START**

| $\rightarrow$ | W | e | ш | a | r | е | ш | S | е |  |
|---------------|---|---|---|---|---|---|---|---|---|--|
|               | t | h | r | h | r | е | n | i | 0 |  |
|               | а | e | t | а |   |   | ы | t | i |  |
|               | i |   |   |   |   |   |   | n | а |  |
|               | Ζ |   |   |   |   |   |   | g | h |  |
|               | S |   |   |   |   |   |   | n | е |  |
|               | m |   |   |   |   |   |   | а |   |  |
|               | i |   |   |   |   |   |   | j |   |  |
|               | У |   |   |   |   |   |   | t |   |  |
|               | W |   |   |   |   |   |   | С |   |  |
|               |   |   |   |   |   |   |   | S |   |  |

#### **START**

| W | е | ш  | а | r | е | ш  | S | е | ee |
|---|---|----|---|---|---|----|---|---|----|
| t | h | r  | h | r | е | n  | i | 0 | e  |
| а | е | t  | а |   |   | u. | t | i |    |
| i |   | ц. |   |   |   |    | n | а |    |
| Ζ |   |    |   |   |   |    | g | h |    |
| S |   |    |   |   |   |    | n | е |    |
| m |   |    |   |   |   |    | а |   |    |
| i |   |    |   |   |   |    | j |   |    |
| У |   |    |   |   |   |    | t |   |    |
| W |   |    |   |   |   |    | С |   |    |
|   |   |    |   |   |   |    | S |   |    |

#### **START**

| $\rightarrow$ | W | е | ш  | а | r | е | ш | S | е | е | i |  |
|---------------|---|---|----|---|---|---|---|---|---|---|---|--|
|               | t | h | r  | h | r | е | n | i | 0 | е | i |  |
|               | а | е | t  | а |   |   |   | t | i |   |   |  |
|               | i |   | ц. |   |   |   |   | n | а |   |   |  |
|               | Ζ |   |    |   |   |   |   | g | h |   |   |  |
|               | S |   |    |   |   |   |   | n | е |   |   |  |
|               | m |   |    |   |   |   |   | а |   |   |   |  |
|               | i |   |    |   |   |   |   | j |   |   |   |  |
|               | У |   |    |   |   |   |   | t |   |   |   |  |
|               | W |   |    |   |   |   |   | С |   |   |   |  |
|               |   |   |    |   |   |   |   | S |   |   |   |  |

#### **START**

| $\rightarrow$ | W | е | ш | а | r | е | ш | S | е | е | i | n |
|---------------|---|---|---|---|---|---|---|---|---|---|---|---|
|               | t | h | r | h | r | е | n | i | 0 | е | i | n |
|               | а | e | t | а |   |   |   | t | i |   |   |   |
|               | i |   |   |   |   |   |   | n | а |   |   |   |
|               | Ζ |   |   |   |   |   |   | g | h |   |   |   |
|               | S |   |   |   |   |   |   | n | е |   |   |   |
|               | m |   |   |   |   |   |   | а |   |   |   |   |
|               | i |   |   |   |   |   |   | j |   |   |   |   |
|               | У |   |   |   |   |   |   | t |   |   |   |   |
|               | W |   |   |   |   |   |   | С |   |   |   |   |
|               |   |   |   |   |   |   |   | S |   |   |   |   |

#### **START**

| $\rightarrow$ | W | е | ш | а | r | е | ш  | S | е | е | i | n | g |
|---------------|---|---|---|---|---|---|----|---|---|---|---|---|---|
|               | t | h | r | h | r | е | n  | i | 0 | е | i | n | g |
|               | а | е | t | а |   |   | ц. | t | i |   |   |   |   |
|               | i |   | u |   |   |   |    | n | а |   |   |   |   |
|               | Ζ |   |   |   |   |   |    | g | h |   |   |   |   |
|               | S |   |   |   |   |   |    | n | е |   |   |   |   |
|               | m |   |   |   |   |   |    | а |   |   |   |   |   |
|               | i |   |   |   |   |   |    | j |   |   |   |   |   |
|               | У |   |   |   |   |   |    | t |   |   |   |   |   |
|               | W |   |   |   |   |   |    | С |   |   |   |   |   |
|               |   |   |   |   |   |   |    | S |   |   |   |   |   |

#### **START**

| $\rightarrow$ | W | е | ш  | а | r | е | ш  | S | е | е | i | n | g | <b>L</b> |
|---------------|---|---|----|---|---|---|----|---|---|---|---|---|---|----------|
|               | t | h | r  | h | r | е | n  | i | 0 | е | i | n | g | L.       |
|               | а | е | t  | а |   |   | ц. | t | i |   |   |   |   |          |
|               | i |   | ц. |   |   |   |    | n | а |   |   |   |   |          |
|               | Ζ |   |    |   |   |   |    | g | h |   |   |   |   |          |
|               | S |   |    |   |   |   |    | n | е |   |   |   |   |          |
|               | m |   |    |   |   |   |    | а |   |   |   |   |   |          |
|               | i |   |    |   |   |   |    | j |   |   |   |   |   |          |
|               | У |   |    |   |   |   |    | t |   |   |   |   |   |          |
|               | W |   |    |   |   |   |    | С |   |   |   |   |   |          |
|               |   |   |    |   |   |   |    | S |   |   |   |   |   |          |

#### **START**

| $\rightarrow$ | W | е | ш  | а | r | е | ш | S | е | е | i | n | g | ш |   |
|---------------|---|---|----|---|---|---|---|---|---|---|---|---|---|---|---|
|               | t | h | r  | h | r | е | n | i | 0 | е | i | n | g |   | а |
|               | а | е | t  | а |   |   | ы | t | i |   |   |   |   |   |   |
|               | i |   | ц. |   |   |   |   | n | а |   |   |   |   |   |   |
|               | Ζ |   |    |   |   |   |   | g | h |   |   |   |   |   |   |
|               | S |   |    |   |   |   |   | n | е |   |   |   |   |   |   |
|               | m |   |    |   |   |   |   | а |   |   |   |   |   |   |   |
|               | i |   |    |   |   |   |   | j |   |   |   |   |   |   |   |
|               | У |   |    |   |   |   |   | t |   |   |   |   |   |   |   |
|               | W |   |    |   |   |   |   | С |   |   |   |   |   |   |   |
|               |   |   |    |   |   |   |   | S |   |   |   |   |   |   |   |

#### **START**

| $\rightarrow$ | W | е | ш  | а | r | е | ш | S | е | е | i | n | g | ш |   |
|---------------|---|---|----|---|---|---|---|---|---|---|---|---|---|---|---|
|               | t | h | r  | h | r | е | n | i | 0 | е | i | n | g |   | а |
|               | а | е | t  | а |   |   | ы | t | i |   |   |   |   |   | m |
|               | i |   | υ. |   |   |   |   | n | а |   |   |   |   |   |   |
|               | Ζ |   |    |   |   |   |   | g | h |   |   |   |   |   |   |
|               | S |   |    |   |   |   |   | n | е |   |   |   |   |   |   |
|               | m |   |    |   |   |   |   | а |   |   |   |   |   |   |   |
|               | i |   |    |   |   |   |   | j |   |   |   |   |   |   |   |
|               | У |   |    |   |   |   |   | t |   |   |   |   |   |   |   |
|               | W |   |    |   |   |   |   | С |   |   |   |   |   |   |   |
|               |   |   |    |   |   |   |   | S |   |   |   |   |   |   |   |

#### **START**

| $\rightarrow$ | W | е | ш  | a | r | е | ц | S | е | е | i | n | g | ш | t |
|---------------|---|---|----|---|---|---|---|---|---|---|---|---|---|---|---|
|               | t | h | r  | h | r | е | n | i | 0 | е | i | n | g |   | а |
|               | а | е | t  | а |   |   | ы | t | i |   |   |   |   |   | m |
|               | i |   | ц. |   |   |   |   | n | а |   |   |   |   |   | i |
|               | Ζ |   |    |   |   |   |   | g | h |   |   |   |   |   |   |
|               | S |   |    |   |   |   |   | n | е |   |   |   |   |   |   |
|               | m |   |    |   |   |   |   | а |   |   |   |   |   |   |   |
|               | i |   |    |   |   |   |   | j |   |   |   |   |   |   |   |
|               | У |   |    |   |   |   |   | t |   |   |   |   |   |   |   |
|               | W |   |    |   |   |   |   | С |   |   |   |   |   |   |   |
|               |   |   |    |   |   |   |   | S |   |   |   |   |   |   |   |

#### **START**

| $\rightarrow$ | W | е | ш | a | r | е | ш  | S | е | е | i | n | g | ш | t |
|---------------|---|---|---|---|---|---|----|---|---|---|---|---|---|---|---|
|               | t | h | r | h | r | е | n  | i | 0 | е | i | n | g |   | a |
|               | а | е | t | а |   |   | ц. | t | i |   |   |   |   |   | m |
|               | i |   | ц |   |   |   |    | n | а |   |   |   |   |   | i |
|               | Ζ |   |   |   |   |   |    | g | h |   |   |   |   |   | t |
|               | S |   |   |   |   |   |    | n | е |   |   |   |   |   |   |
|               | m |   |   |   |   |   |    | а |   |   |   |   |   |   |   |
|               | i |   |   |   |   |   |    | j |   |   |   |   |   |   |   |
|               | У |   |   |   |   |   |    | t |   |   |   |   |   |   |   |
|               | W |   |   |   |   |   |    | С |   |   |   |   |   |   |   |
|               |   |   |   |   |   |   |    | S |   |   |   |   |   |   |   |

#### **START**

| $\rightarrow$ | W | е | ш  | а | r | е | ш  | S | е | е | i | n | g | ш | t | h |
|---------------|---|---|----|---|---|---|----|---|---|---|---|---|---|---|---|---|
|               | t | h | r  | h | r | е | n  | i | 0 | е | i | n | g |   | а | h |
|               | а | е | t  | а |   |   | υ. | t | i |   |   |   |   |   | m |   |
|               | i |   | u. |   |   |   |    | n | а |   |   |   |   |   | i |   |
|               | Ζ |   |    |   |   |   |    | g | h |   |   |   |   |   | t |   |
|               | S |   |    |   |   |   |    | n | е |   |   |   |   |   |   |   |
|               | m |   |    |   |   |   |    | а |   |   |   |   |   |   |   |   |
|               | i |   |    |   |   |   |    | j |   |   |   |   |   |   |   |   |
|               | У |   |    |   |   |   |    | t |   |   |   |   |   |   |   |   |
|               | W |   |    |   |   |   |    | С |   |   |   |   |   |   |   |   |
|               |   |   |    |   |   |   |    | S |   |   |   |   |   |   |   |   |

#### **START**

| <br>W | е | ш  | а | r | е | ш  | S | е | е | i | n | g | ш | t | h | ••• |
|-------|---|----|---|---|---|----|---|---|---|---|---|---|---|---|---|-----|
| t     | h | r  | h | r | е | n  | i | 0 | е | i | n | g |   | а | h |     |
| а     | е | t  | а |   |   | μ. | t | i |   |   |   |   |   | m |   |     |
| i     |   | ц. |   |   |   |    | n | а |   |   |   |   |   | i |   |     |
| Ζ     |   |    |   |   |   |    | g | h |   |   |   |   |   | t |   |     |
| S     |   |    |   |   |   |    | n | е |   |   |   |   |   |   |   |     |
| m     |   |    |   |   |   |    | а |   |   |   |   |   |   |   |   |     |
| i     |   |    |   |   |   |    | j |   |   |   |   |   |   |   |   |     |
| У     |   |    |   |   |   |    | t |   |   |   |   |   |   |   |   |     |
| W     |   |    |   |   |   |    | С |   |   |   |   |   |   |   |   |     |
|       |   |    |   |   |   |    | S |   |   |   |   |   |   |   |   |     |

### Radineg scralmbed wrods

## Radineg scralmbed wrods

in tehy All btahree. unooncuiscs stay be mmamals to to sttae for wehlas, need selep, buscaee long, they cnnaot an too conoscuis idnncilug but

## Radineg scralmbed wrods

in tehy All btahree. unooncuiscs stay be mmamals to to sttae for wehlas, need selep, buscaee long, they cnnaot an too conoscuis idnncilug but

All mmamals selep, idnncilug wehlas, but they cnnaot stay in an unooncuiscs sttae for too long, buscaee tehy need to be conoscuis to btahree.

In speech understanding, identify words incrementally!

In speech understanding, identify words incrementally!

cap tucked

In speech understanding, identify words incrementally!

cap tucked

captain

In speech understanding, identify words incrementally!

cap tucked

captain

Especially challenging given segmentation ambiguity

I uh, I found out that my grandmother was one of a twin.

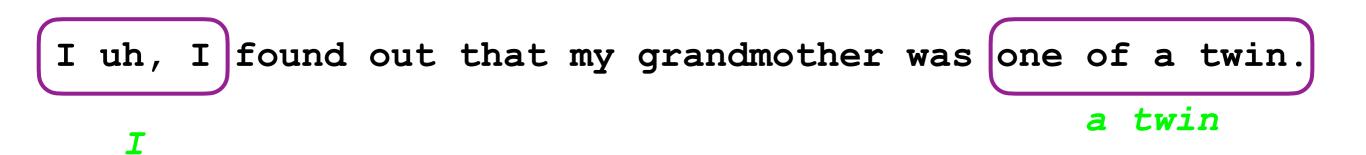
I uh, I found out that my grandmother was one of a twin.

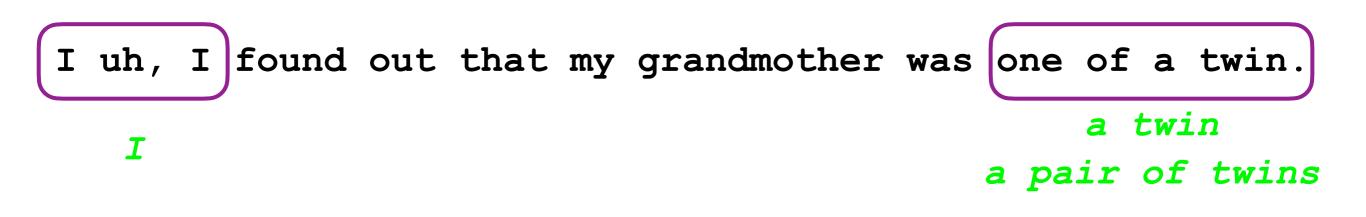
I uh, I found out that my grandmother was one of a twin.

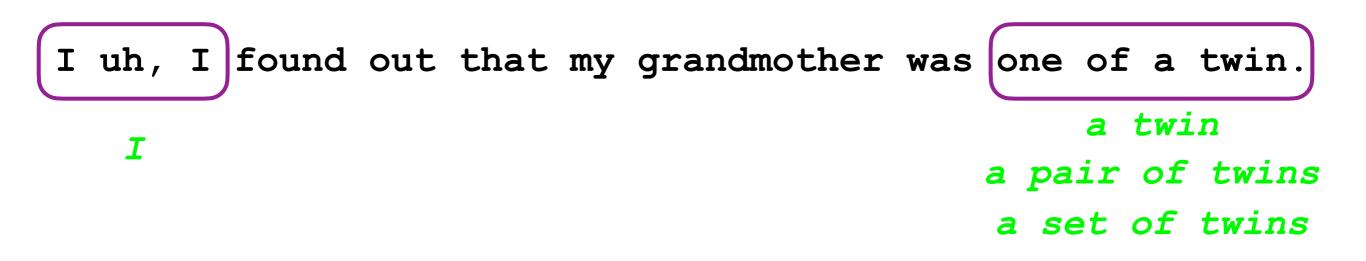
Ι

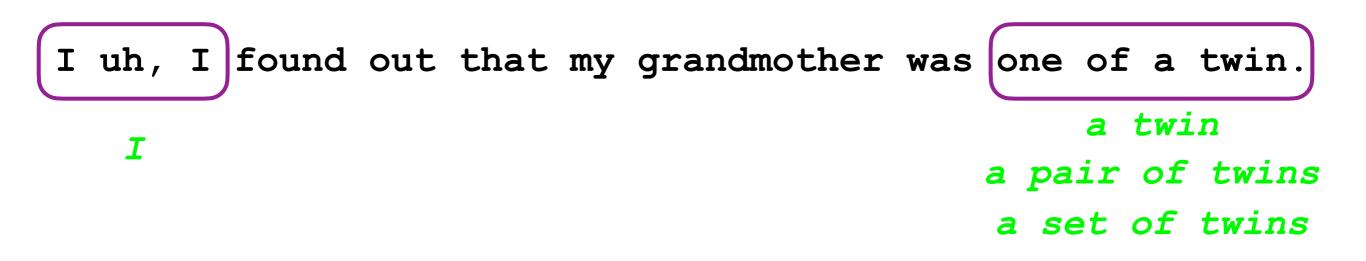
I uh, I found out that my grandmother was one of a twin.

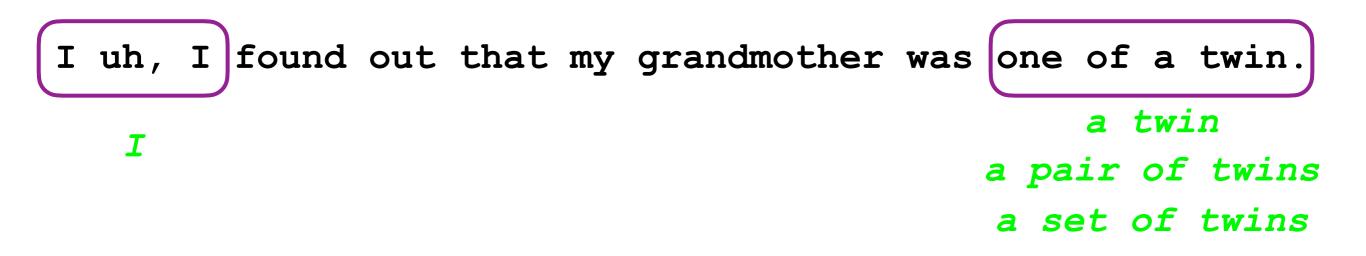
Ι



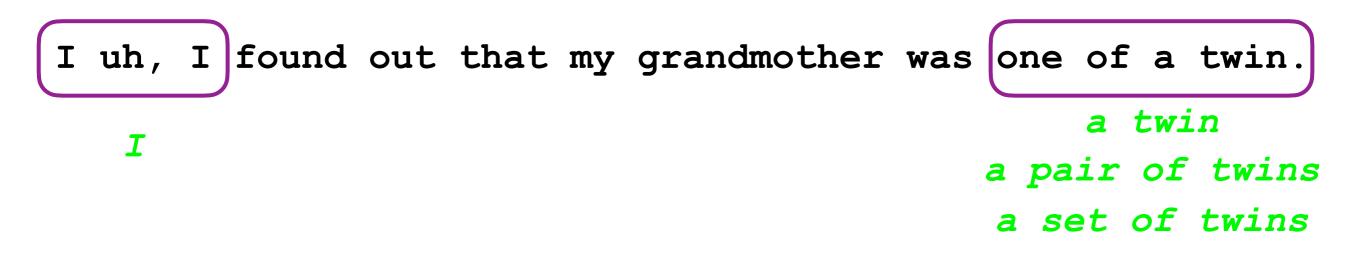




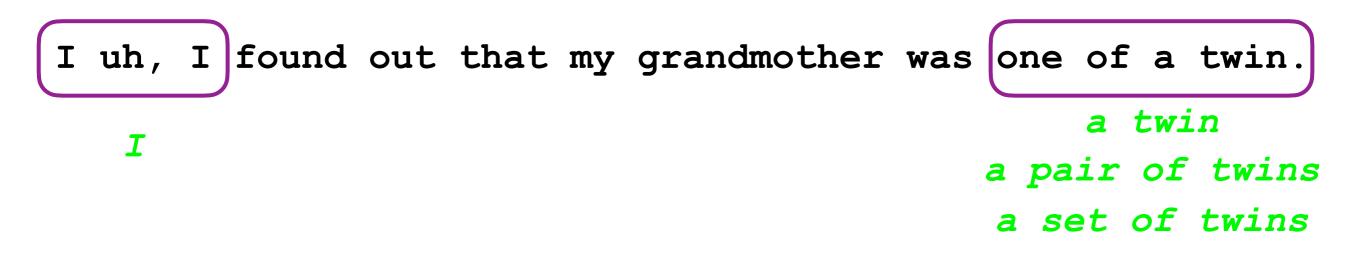




The businessman benefited the tax law significantly.



The businessman benefited the tax law significantly.

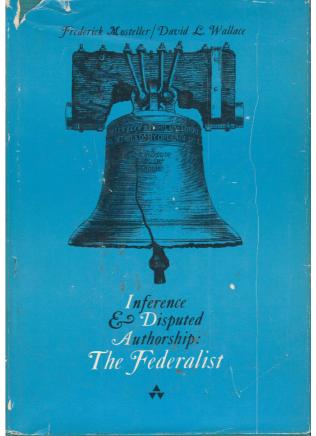


The businessman benefited the tax law significantly. from

# Speaker modeling (e.g., author ID)

 One of the oldest applications of probability in computational linguistics!





As the people are the only legitimate fountain of power, and it is from them that the constitutional charter, under which the several branches of government hold their power, is derived, it seems strictly consonant to the republican theory, to recur to the same original authority, not only whenever it may be necessary to enlarge, diminish, or new-model the powers of the government, but also whenever any one of the departments may commit encroachments on the chartered authorities of the others. — Federalist 49, Publius

#### (Mosteller & Wallace, 1964)

• Brains are *prediction* engines!

• Brains are *prediction* engines! *my brother came inside to...* 

• Brains are *prediction* engines! my brother came inside to ... chat?

 Brains are *prediction* engines! my brother came inside to ... chat? wash?

 Brains are *prediction* engines! my brother came inside to ... chat? wash? get warm?

• Brains are *prediction* engines!

my brother came inside to ... chat? wash? get warm?

the children went outside to...

• Brains are *prediction* engines!

my brother came inside to ... chat? wash? get warm?

the children went outside to ... play

• Brains are *prediction* engines!

my brother came inside to ... chat? wash? get warm?

the children went outside to ... play

• Predictable words are read faster (Ehrlich & Rayner, 1981) and have distinctive EEG responses (Kutas & Hillyard 1980)

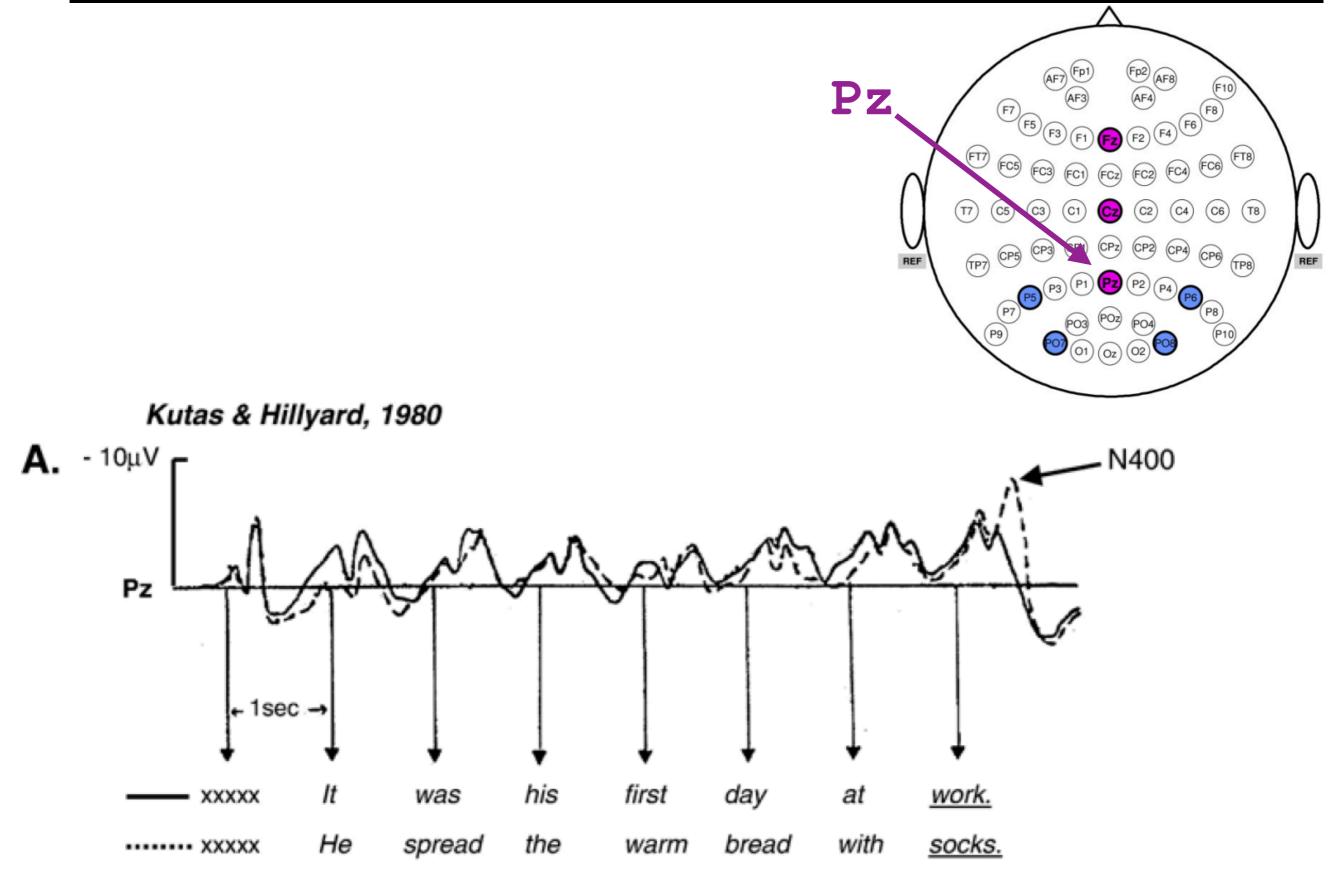
• Brains are *prediction* engines!

my brother came inside to ... chat? wash? get warm?

the children went outside to ... play

- Predictable words are read faster (Ehrlich & Rayner, 1981) and have distinctive EEG responses (Kutas & Hillyard 1980)
- The more we expect an event, the easier it is to process

### Word responses



 Relevant for human language production, spoken dialog systems, machine translation, and more!

 Relevant for human language production, spoken dialog systems, machine translation, and more!

dog's tail

dog's tale

 Relevant for human language production, spoken dialog systems, machine translation, and more!

dog's tail 6000:1 dog's tale

- Relevant for human language production, spoken dialog systems, machine translation, and more!
  - dog's tail 6000:1 dog's tale
  - tail of a dog tale of a dog

- Relevant for human language production, spoken dialog systems, machine translation, and more!
  - dog's tail 6000:1 dog's tale
    tail of a dog 750:1 tale of a dog

## Collocationality

- A collocation is a word sequence that appears "unusually often"
- Consider the following word pairs in strength of the collocate:

## Collocationality

- A collocation is a word sequence that appears "unusually often"
- Consider the following word pairs in strength of the collocate:
- young childhood early childhood

# Collocationality

- A collocation is a word sequence that appears "unusually often"
- Consider the following word pairs in strength of the collocate:
- young childhood early childhood
- mass destruction illegal destruction

# Collocationality

- A collocation is a word sequence that appears "unusually often"
- Consider the following word pairs in strength of the collocate:
- young childhood early childhood
- mass destruction illegal destruction

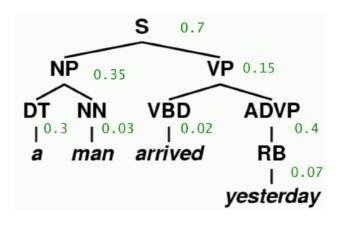
good cuisine ethnic cuisine

### Word sequence frequencies

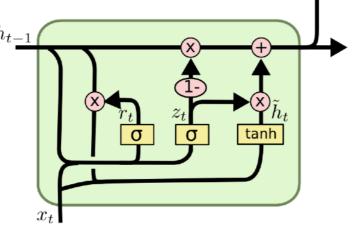
0 Δ O Ξ books.google.com C Google Books Ngram Viewer Graph these comma-separated a dog's tale, a dog's tail case-insensitive phrases: from the corpus English with smoothing of 3 + between 1800 and 2000 Search lots of books Ngrams not found: a dog's tale The Ngram Viewer is case sensitive. Check your capitalization! Replaced a dog's tail with a dog 's tail to match how we processed the books. 0.00000350% 0.00000300% 0.00000250% 0.00000200% a dog 's tail 0.00000150% 0.00000100% 0.0000050% 0.0000000% 1840 1820 1860 1880 1900 1920 1940 1960 1980 2000 1800 (click on line/label for focus) Search in Google Books: 1846 - 1928 1929 - 1940 1941 - 1976 1977 - 2000 a dog's tail 1800 - 1845

### Modeling human knowledge of word sequences

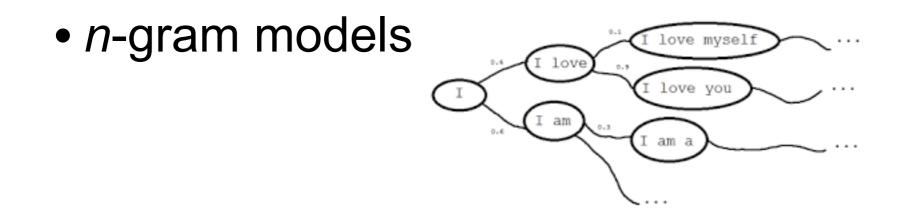
- Many techniques, none perfect!
  - Probabilistic grammars



• Neural network models<sup>1,1</sup>

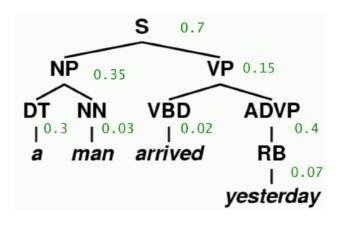


 $z_t = \sigma \left( W_z \cdot [h_{t-1}, x_t] \right)$  $r_t = \sigma \left( W_r \cdot [h_{t-1}, x_t] \right)$  $\tilde{h}_t = \tanh \left( W \cdot [r_t * h_{t-1}, x_t] \right)$  $h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$ 

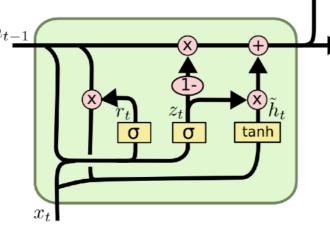


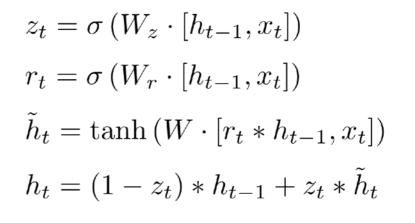
### Modeling human knowledge of word sequences

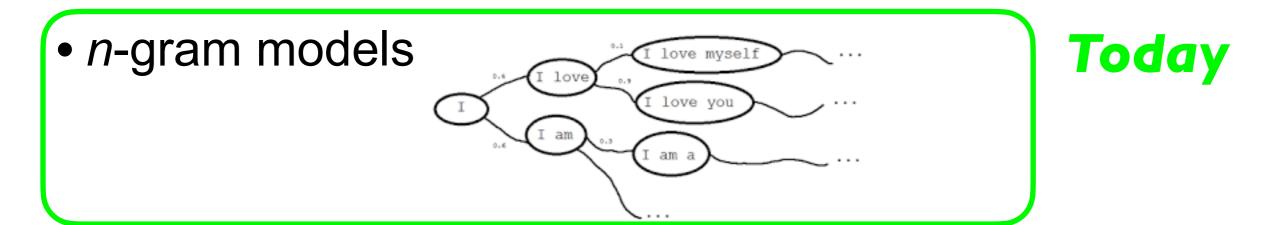
- Many techniques, none perfect!
  - Probabilistic grammars



• Neural network models<sup>h</sup>







Probability that next sentence is "dogs chase cats"?

Probability that next sentence is "dogs chase cats"?

 $P(\vec{w} = \$ \text{ dogs chase cats } \$)$ 

Probability that next sentence is "dogs chase cats"?

 $P(\vec{w}=\$  dogs chase cats  $\$ 

Remember the chain rule!

$$P(x_1, \dots, x_k) = \prod_{i=1}^k P(x_i | x_1, \dots, x_{i-1})$$

Probability that next sentence is "dogs chase cats"?

 $P(\vec{w}=\$  dogs chase cats  $\$ 

Remember the chain rule!

$$P(x_1, \dots, x_k) = \prod_{i=1}^k P(x_i | x_1, \dots, x_{i-1})$$

Applying this to our sentence we get

$$\begin{split} P(\vec{w} = \$ \text{ dogs chase cats }) = & P(\$|\$ \text{ dogs chase cats}) \times \\ & P(\texttt{cats}|\$ \text{ dogs chase}) \times \\ & P(\texttt{chase}|\$ \text{ dogs}) \times \\ & P(\texttt{dogs}|\$) \end{split}$$

Probability that next sentence is "dogs chase cats"?

 $P(\vec{w} = \$ \text{ dogs chase cats } \$)$ 

Remember the chain rule!

$$P(x_1, \dots, x_k) = \prod_{i=1}^{k} P(x_i | x_1, \dots, x_{i-1})$$

Applying this to our sentence we get

$$\begin{split} P(\vec{w} = \$ \text{ dogs chase cats } \$) = & P(\$|\$ \text{ dogs chase cats}) \times \\ & P(\texttt{cats}|\$ \text{ dogs chase}) \times \\ & P(\texttt{chase}|\$ \text{ dogs}) \times \\ & P(\texttt{dogs}|\$) \end{split}$$
 • Simplify—e.g., assume  $w_i \perp w_{1...i-2} | w_{i-1}$  to give us

 $P(\texttt{\$ dogs chase cats \$}) \approx P(\texttt{\$|cats}) P(\texttt{cats|chase}) P(\texttt{chase|dogs}) P(\texttt{dogs|\$})$ 

Probability that next sentence is "dogs chase cats"?

 $P(\vec{w} = \$ \text{ dogs chase cats } \$)$ 

Remember the chain rule!

$$P(x_1, \dots, x_k) = \prod_{i=1}^k P(x_i | x_1, \dots, x_{i-1})$$

Applying this to our sentence we get

 $P(\vec{w} = \$ \text{ dogs chase cats }) = P(\$|\$ \text{ dogs chase cats}) \times P(\text{cats}|\$ \text{ dogs chase}) \times P(\text{cats}|\$ \text{ dogs}) \times P(\text{chase}|\$ \text{ dogs}) \times P(\text{dogs}|\$)$ 

• Simplify—e.g., assume  $w_i \perp w_{1...i-2} | w_{i-1}$  to give us

 $P(\texttt{\$ dogs chase cats \$}) \approx P(\texttt{\$|cats}) P(\texttt{cats|chase}) P(\texttt{chase|dogs}) P(\texttt{dogs}|\texttt{\$})$ 

MARKOV ASSUMPTION, giving a 2-gram (bigram) model 17

### n-gram approximations of Shakespeare

| 1<br>gram | <ul> <li>To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have</li> <li>Hill he late speaks; or! a more to leg less first you enter</li> </ul>            |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2<br>gram | <ul><li>Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow.</li><li>What means, sir. I confess she? then all sorts, he is trim, captain.</li></ul> |
| 3<br>gram | <ul><li>-Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, 'tis done.</li><li>-This shall forbid it should be branded, if renown made it empty.</li></ul>     |
| 4<br>gram | <ul> <li>–King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv'd in;</li> <li>–It cannot be but so.</li> </ul>                                    |

### n-gram approximations of the Wall Street Journal

1<br/>gramMonths the my and issue of year foreign new exchange's september<br/>were recession exchange new endorsed a acquire to six executives2<br/>gramLast December through the way to preserve the Hudson corporation N.<br/>B. E. C. Taylor would seem to complete the major central planners one<br/>point five percent of U. S. E. has already old M. X. corporation of living<br/>on information such as more frequently fishing to keep her3<br/>gramThey also point to ninety nine point six billion dollars from two hundred<br/>four oh six three percent of the rates of interest stores as Mexico and<br/>Brazil on market conditions

### (courtesy Dan Jurafsky)

#### General scenario:

- You want to estimate conditional probabilities P(Y|X)
- You have training data consisting of some  $\langle X, Y \rangle$ -pairs
- You have chosen a "model class" (a PARAMETERIZED FAMILY of probability distributions)

### Bigram estimation:

- You want to estimate  $P(w_i|w_{i-1})$  in a language model
- You have some sentences
- You assume each  $w_{i-1}$  has its own multinomial over  $w_i$

#### General scenario:

- You want to estimate conditional probabilities P(Y|X)
- You have training data consisting of some  $\langle X, Y \rangle$ -pairs
- You have chosen a "model class" (a PARAMETERIZED FAMILY of probability distributions)

### Bigram estimation:

- You want to estimate  $P(w_i|w_{i-1})$  in a language model
- You have some sentences
- You assume each w<sub>i-1</sub> has its own multinomial over w<sub>i</sub>
- <s> dogs chase cats </s>
- <s> dogs bark </s>
- <s> cats meow </s>
- <s> dogs chase birds </s>
- <s> cats chase birds </s>
- <s> dogs chase the cats </s>
- <s> the birds chirp </s>

```
(repeat slide from lecture 3)
```

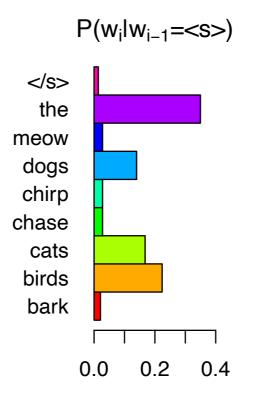
### General scenario:

- You want to estimate conditional probabilities P(Y|X)
- You have training data consisting of some (X, Y)-pairs
- You have chosen a "model class" (a PARAMETERIZED FAMILY of probability distributions)

### Bigram estimation:

- You want to estimate  $P(w_i|w_{i-1})$  in a language model
- You have some sentences
- You assume each  $w_{i-1}$  has its own multinomial over  $w_i$

- <s> dogs chase birds </s>
- <s> cats chase birds </s>
- <s> dogs chase the cats </s>
- <s> the birds chirp </s>



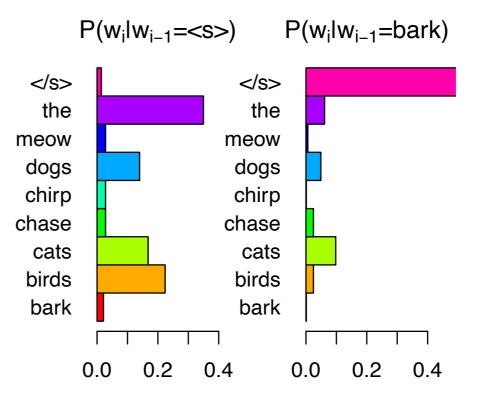
### General scenario:

- You want to estimate conditional probabilities P(Y|X)
- You have training data consisting of some (X, Y)-pairs
- You have chosen a "model class" (a PARAMETERIZED FAMILY of probability distributions)

### Bigram estimation:

- You want to estimate  $P(w_i|w_{i-1})$  in a language model
- You have some sentences
- You assume each  $w_{i-1}$  has its own multinomial over  $w_i$

- <s> dogs bark </s>
- <s> cats meow </s>
- <s> dogs chase birds </s>
- <s> cats chase birds </s>
- <s> dogs chase the cats </s>
- <s> the birds chirp </s>



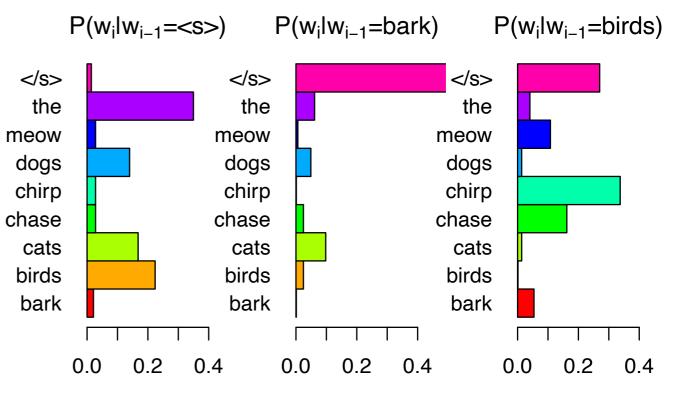
### General scenario:

- You want to estimate conditional probabilities P(Y|X)
- You have training data consisting of some (X, Y)-pairs
- You have chosen a "model class" (a PARAMETERIZED FAMILY of probability distributions)

### Bigram estimation:

- You want to estimate  $P(w_i|w_{i-1})$  in a language model
- You have some sentences
- You assume each w<sub>i-1</sub> has its own multinomial over w<sub>i</sub>

- <s> dogs bark </s>
- <s> cats meow </s>
- <s> dogs chase birds </s>
- <s> cats chase birds </s>
- <s> dogs chase the cats </s>
- <s> the birds chirp </s>



### General scenario:

- You want to estimate conditional probabilities P(Y|X)
- You have training data consisting of some (X, Y)-pairs
- You have chosen a "model class" (a PARAMETERIZED FAMILY of probability distributions)

### Bigram estimation:

- You want to estimate  $P(w_i|w_{i-1})$  in a language model
- You have some sentences
- You assume each w<sub>i-1</sub> has its own multinomial over w<sub>i</sub>

```
<s> dogs chase cats </s>
```

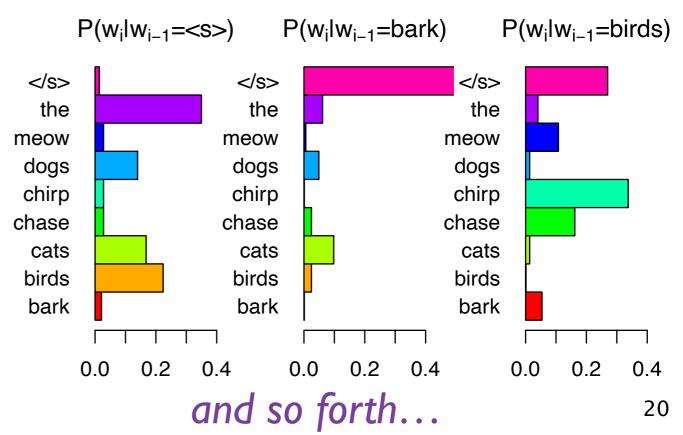
```
<s> dogs bark </s>
```

```
<s> cats meow </s>
```

```
<s> dogs chase birds </s>
```

- <s> cats chase birds </s>
- <s> dogs chase the cats </s>
- <s> the birds chirp </s>

```
(repeat slide from lecture 3)
```



<s> dogs chase cats </s>
<s> dogs bark </s>
<s> cats meow </s>
<s> dogs chase birds </s>
<s> cats chase birds </s>
<s> cats chase the cats </s>
<s> the birds chirp </s>

```
<s> dogs chase cats </s>
<s> dogs bark </s>
<s> cats meow </s>
<s> dogs chase birds </s>
<s> cats chase birds </s>
<s> cats chase the cats </s>
<s> the birds chirp </s>
```

Consider each multinomial parameter

```
<s> dogs chase cats </s>
<s> dogs bark </s>
<s> cats meow </s>
<s> dogs chase birds </s>
<s> cats chase birds </s>
<s> cats chase the cats </s>
<s> the birds chirp </s>
```

- Consider each multinomial parameter
  - e.g., let us call p the value of  $P(w_i = bark | w_{i-1} = dogs)$

| <s></s> | dogs  | chase cats     |
|---------|-------|----------------|
| <\$>    | dogs  | bark           |
| <\$>    | cats  | meow           |
| <\$>    | dogs  | chase birds    |
| <\$>    | cats  | chase birds    |
| <\$>    | dogs  | chase the cats |
| <\$>    | the b | oirds chirp    |

| c(w <sub>i-1</sub> =dogs,w <sub>i</sub> =chase) | = 3 |
|-------------------------------------------------|-----|
| c(w <sub>i-1</sub> =dogs,w <sub>i</sub> =bark)  | = 1 |
| c(w <sub>i-1</sub> =dogs)                       | = 4 |

- Consider each multinomial parameter
  - e.g., let us call p the value of  $P(w_i = bark | w_{i-1} = dogs)$

|         | dogs chase cats     |
|---------|---------------------|
| <s></s> | dogs bark           |
|         | cats meow           |
|         | dogs chase birds    |
|         | cats chase birds    |
| <\$>    | dogs chase the cats |
| <s></s> | the birds chirp     |

| c(w <sub>i-1</sub> =dogs,w <sub>i</sub> =chase) | = 3 |
|-------------------------------------------------|-----|
| c(w <sub>i-1</sub> =dogs,w <sub>i</sub> =bark)  | = 1 |
| c(w <sub>i-1</sub> =dogs)                       | = 4 |

- Consider each multinomial parameter
  - e.g., let us call p the value of  $P(w_i = bark | w_{i-1} = dogs)$

|         | dogs chase cats     |
|---------|---------------------|
|         | dogs bark           |
|         | cats meow           |
| <\$>    | dogs chase birds    |
|         | cats chase birds    |
| <\$>    | dogs chase the cats |
| <s></s> | the birds chirp     |

| c(w <sub>i-1</sub> =dogs,w <sub>i</sub> =chase) | = 3 |
|-------------------------------------------------|-----|
| c(w <sub>i-1</sub> =dogs,w <sub>i</sub> =bark)  | = 1 |
| c(w <sub>i-1</sub> =dogs)                       | = 4 |

- Consider each multinomial parameter
  - e.g., let us call p the value of  $P(w_i = bark | w_{i-1} = dogs)$

| Wi-1 | Wi    |
|------|-------|
| dogs | chase |
| dogs | bark  |
| dogs | chase |
| dogs | chase |

|         | dogs chase cats     |
|---------|---------------------|
| <s></s> | dogs bark           |
|         | cats meow           |
| <\$>    | dogs chase birds    |
|         | cats chase birds    |
| <\$>    | dogs chase the cats |
| <s></s> | the birds chirp     |

| c(w <sub>i-1</sub> =dogs,w <sub>i</sub> =chase) | = 3 |
|-------------------------------------------------|-----|
| c(w <sub>i-1</sub> =dogs,w <sub>i</sub> =bark)  | = 1 |
| c(w <sub>i-1</sub> =dogs)                       | = 4 |

- Consider each multinomial parameter
  - e.g., let us call p the value of  $P(w_i = bark | w_{i-1} = dogs)$
  - So the value of  $P(w_i \neq bark | w_{i-1} = dogs)$  is 1-p

| Wi-1 | Wi    |
|------|-------|
| dogs | chase |
| dogs | bark  |
| dogs | chase |
| dogs | chase |

|         | dogs chase cats     |
|---------|---------------------|
| <s></s> | dogs bark           |
|         | cats meow           |
|         | dogs chase birds    |
|         | cats chase birds    |
| <\$>    | dogs chase the cats |
| <s></s> | the birds chirp     |

| c(w <sub>i-1</sub> =dogs,w <sub>i</sub> =chase) | = 3 |
|-------------------------------------------------|-----|
| c(w <sub>i-1</sub> =dogs,w <sub>i</sub> =bark)  | = 1 |
| c(w <sub>i-1</sub> =dogs)                       | = 4 |

- Consider each multinomial parameter
  - e.g., let us call p the value of  $P(w_i = bark | w_{i-1} = dogs)$
  - So the value of  $P(w_i \neq bark | w_{i-1} = dogs)$  is 1-p
  - Likelihood for the part of the data where *w*<sub>*i*-1</sub>=dogs:

| Wi-1         | Wi    |
|--------------|-------|
| ₩i-1<br>dogs | chase |
| dogs         | bark  |
| dogs         | chase |
| dogs         | chase |

(repeat slide from lecture 3)

|         | dogs chase cats     |
|---------|---------------------|
| <s></s> | dogs bark           |
|         | cats meow           |
|         | dogs chase birds    |
|         | cats chase birds    |
| <\$>    | dogs chase the cats |
| <s></s> | the birds chirp     |

| c(w <sub>i-1</sub> =dogs,w <sub>i</sub> =chase) | = 3 |
|-------------------------------------------------|-----|
| c(w <sub>i-1</sub> =dogs,w <sub>i</sub> =bark)  | = 1 |
| c(w <sub>i-1</sub> =dogs)                       | = 4 |

- Consider each multinomial parameter
  - e.g., let us call p the value of  $P(w_i = bark | w_{i-1} = dogs)$
  - So the value of  $P(w_i \neq bark | w_{i-1} = dogs)$  is 1-p
  - Likelihood for the part of the data where *w*<sub>*i*-1</sub>=dogs:

*Wi-1 Wi* dogs chase dogs bark dogs chase dogs chase

$$p(1-p)^{3}$$

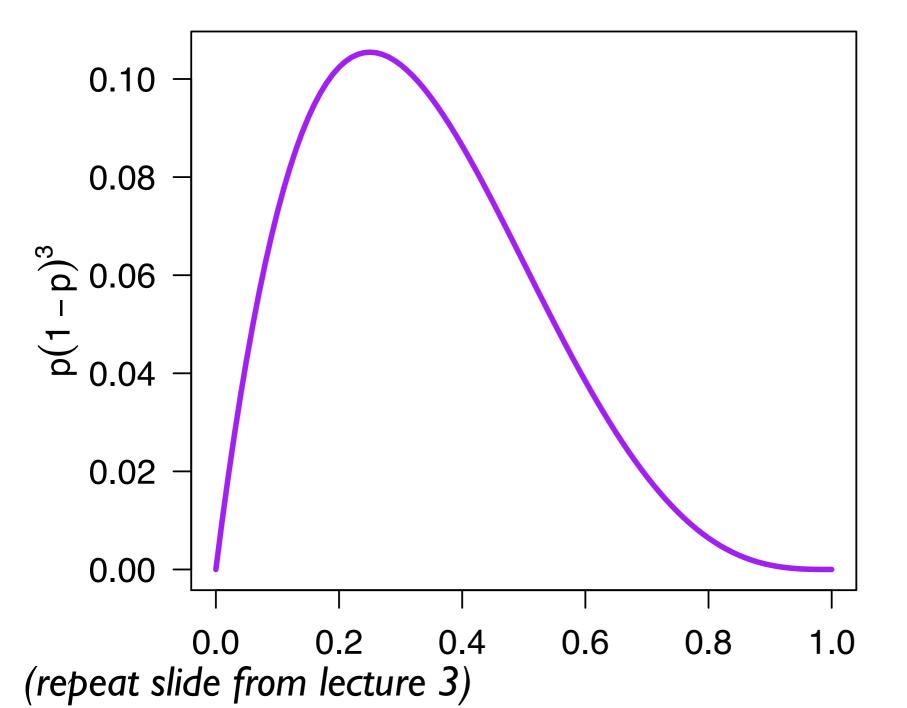
| Wi-1 | Wi    |
|------|-------|
| dogs | chase |
| dogs | bark  |
| dogs | chase |
| dogs | chase |

- *p* refers to the value of  $P(w_i = bark | w_{i-1} = dogs)$
- Likelihood for that part of data where  $w_{i-1}$ =dogs:

| ₩i-1 | <i>Wi</i> |
|------|-----------|
| dogs | chase     |
| dogs | bark      |
| dogs | chase     |
| dogs | chase     |

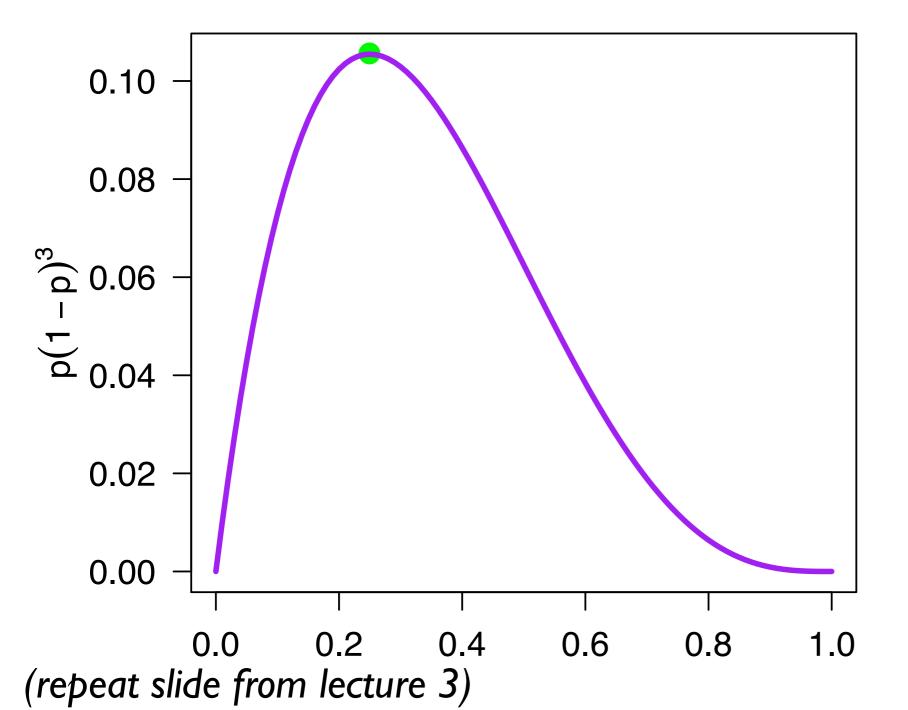
- *p* refers to the value of  $P(w_i = bark | w_{i-1} = dogs)$
- Likelihood for that part of data where *w<sub>i-1</sub>*=dogs:

| Wi-1 | Wi    |
|------|-------|
|      | _     |
| dogs | chase |
| dogs | bark  |
| dogs | chase |
| dogs | chase |



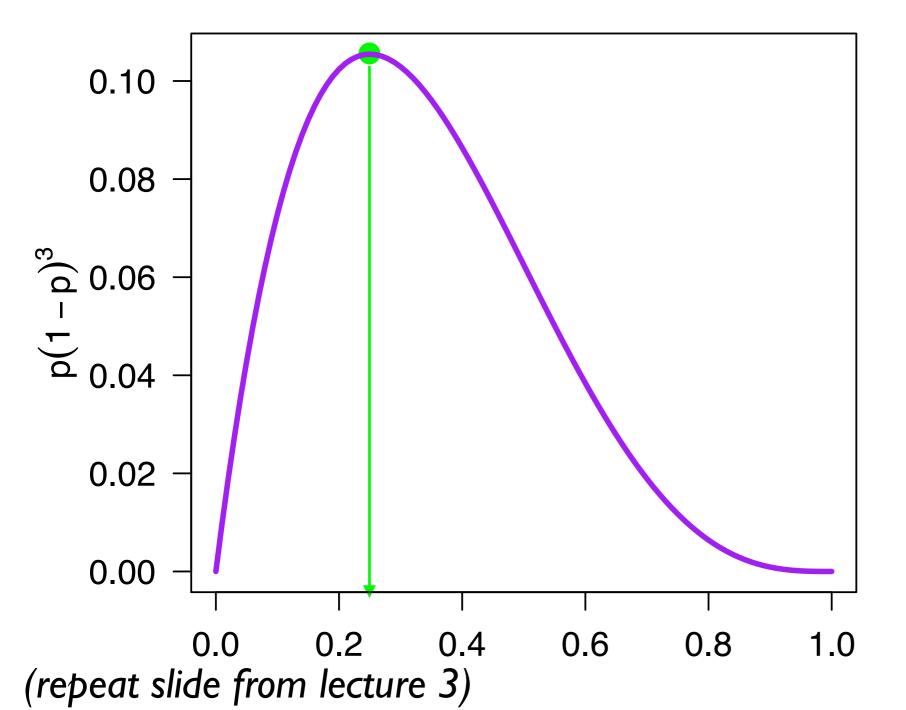
- *p* refers to the value of  $P(w_i = bark | w_{i-1} = dogs)$
- Likelihood for that part of data where *w<sub>i-1</sub>*=dogs:

| Wi-1 | Wi    |
|------|-------|
|      | _     |
| dogs | chase |
| dogs | bark  |
| dogs | chase |
| dogs | chase |



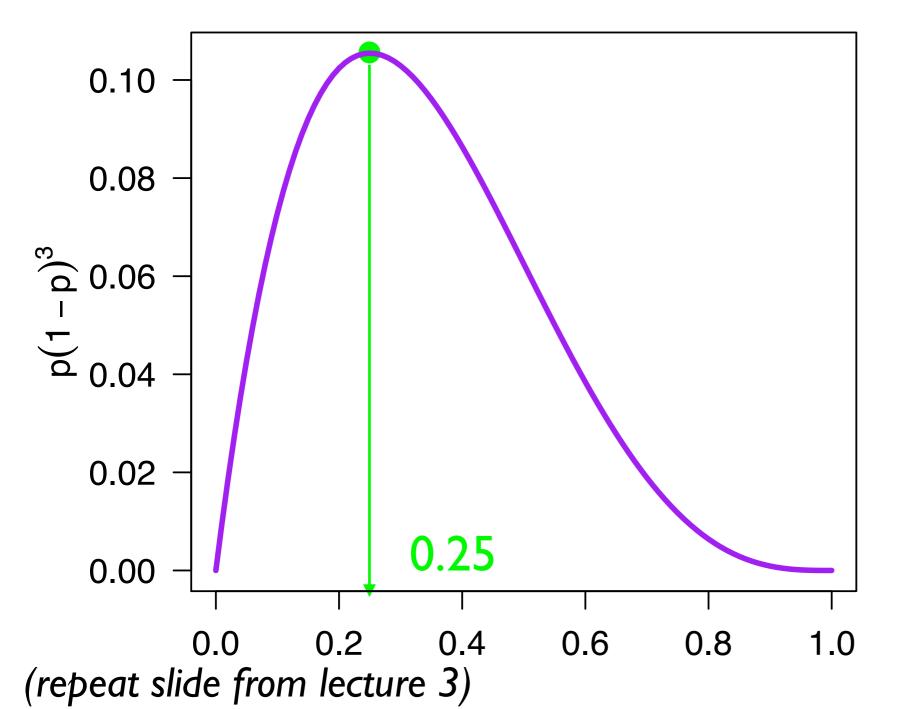
- *p* refers to the value of  $P(w_i = bark | w_{i-1} = dogs)$
- Likelihood for that part of data where *w<sub>i-1</sub>*=dogs:

| ₩i-1<br>dogs | <i>Wi</i><br>chase |
|--------------|--------------------|
| dogs         | bark               |
| dogs         | chase              |
| dogs         | chase              |



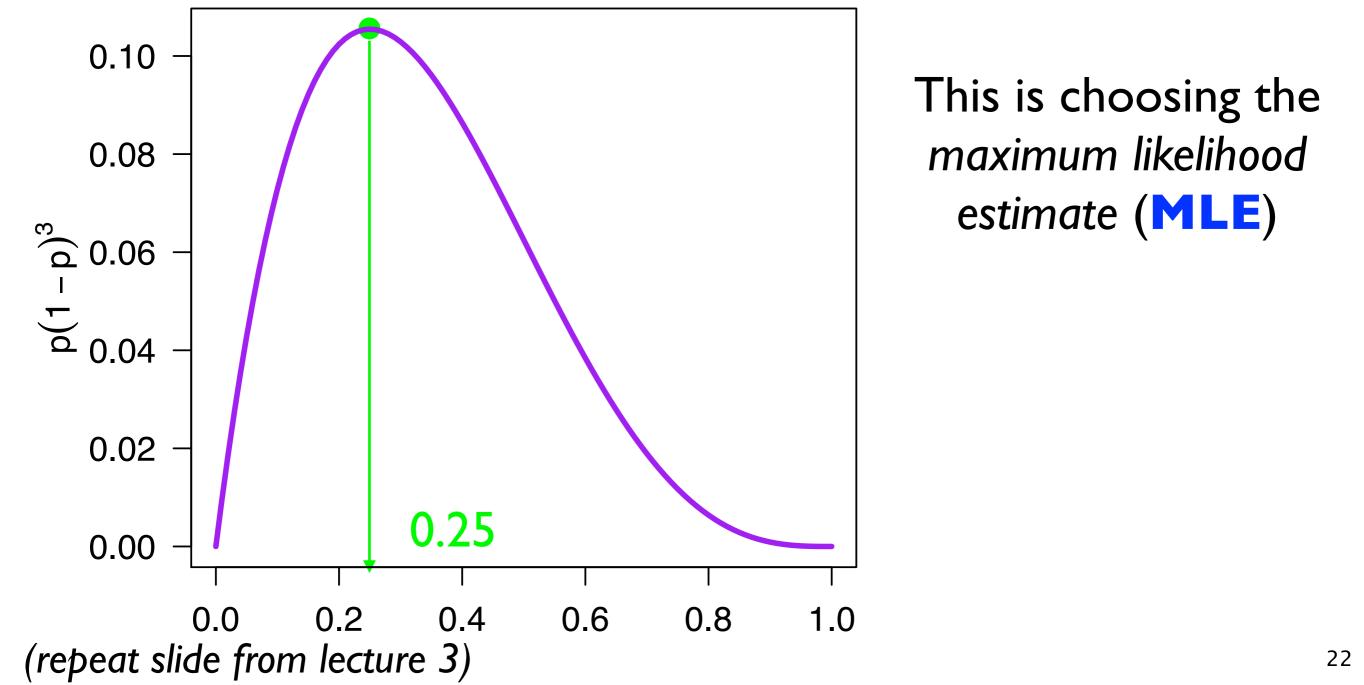
- *p* refers to the value of  $P(w_i = bark | w_{i-1} = dogs)$
- Likelihood for that part of data where *w<sub>i-1</sub>*=dogs:

| Wi-1 | Wi    |
|------|-------|
|      | _     |
| dogs | chase |
| dogs | bark  |
| dogs | chase |
| dogs | chase |



- *p* refers to the value of  $P(w_i = bark | w_{i-1} = dogs)$
- Likelihood for that part of data where  $w_{i-1}$ =dogs:

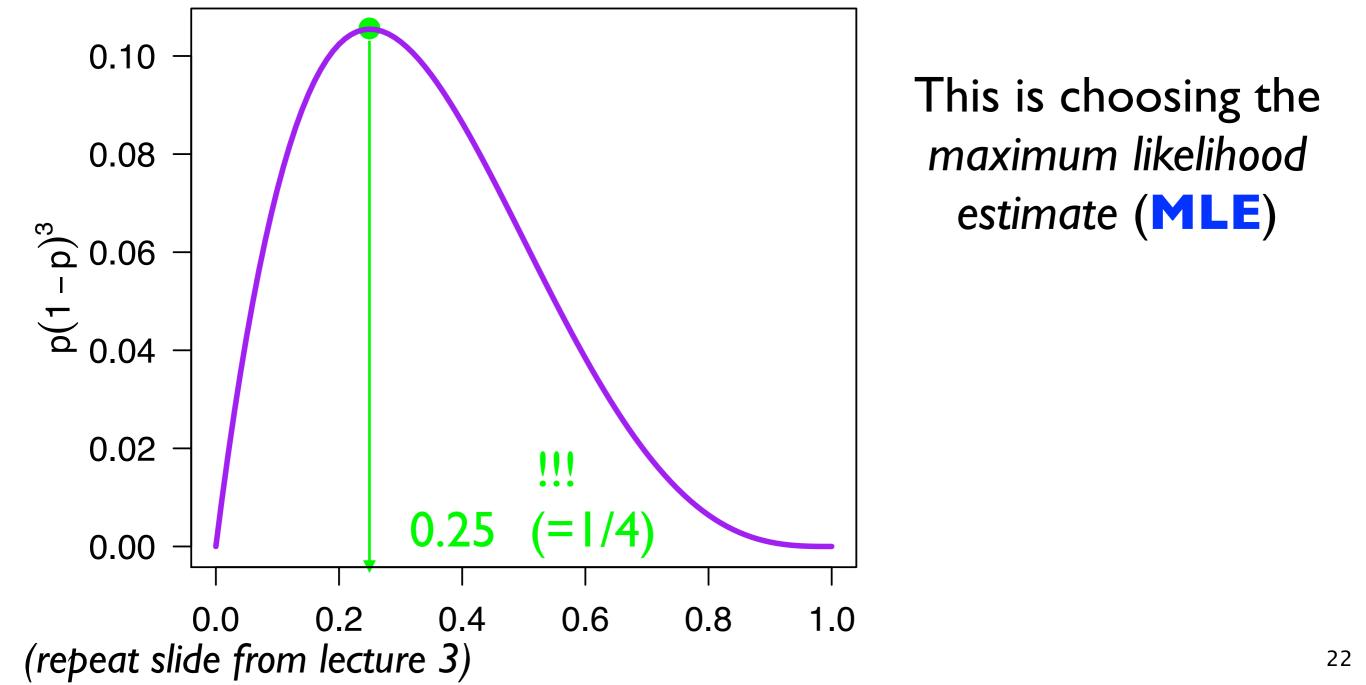
| ₩ <u>i</u><br>chase<br>bark |
|-----------------------------|
| chase<br>chase              |
|                             |



### Maximum likelihood estimation

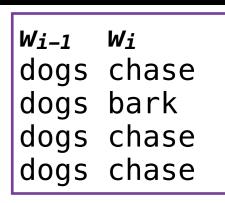
- *p* refers to the value of  $P(w_i = bark | w_{i-1} = dogs)$
- Likelihood for that part of data where  $w_{i-1}$ =dogs:

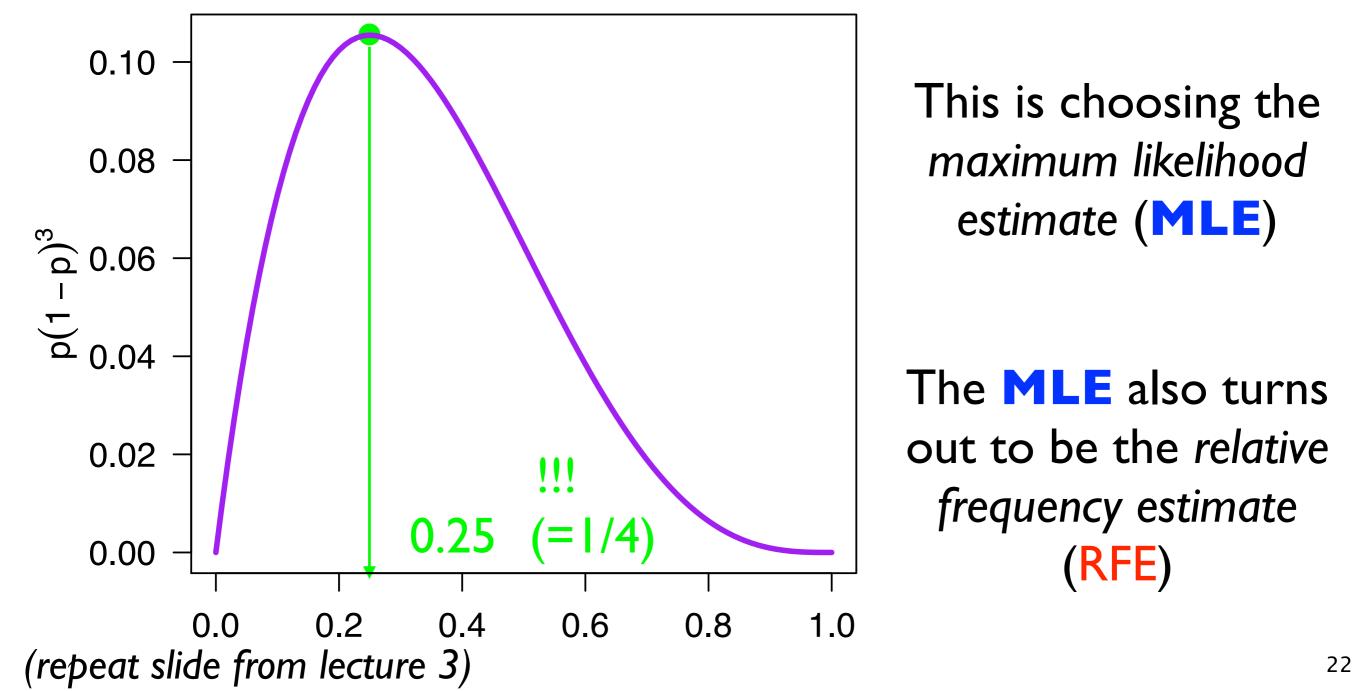
| ₩ <u>i</u><br>chase<br>bark |
|-----------------------------|
| chase<br>chase              |
|                             |



### Maximum likelihood estimation

- *p* refers to the value of P(*w<sub>i</sub>*=bark|*w<sub>i-1</sub>*=dogs)
- Likelihood for that part of data where  $w_{i-1}$ =dogs:





#### Training data (bigram-counts representation):

Context the, events: cats: 1 birds: 1 Context meow, events: </s>: 1 Context birds, events: chirp: 1 </s>: 2 Context chirp, events: </s>: 1 Context cats, events: meow: 1 </s>: 2 chase: 1 Context bark, events: </s>: 1 Context </s>, events: the: 1 cats: 2 dogs: 4 Context dogs, events: bark: 1 chase: 3 Context chase, events: the: 1 cats: 1 birds: 2

#### Training data (bigram-counts representation):

Context the, events: cats: 1 birds: 1 Context meow, events: </s>: 1 Context birds, events: chirp: 1 </s>: 2 Context chirp, events: </s>: 1 Context cats, events: meow: 1 </s>: 2 chase: 1 Context bark, events: </s>: 1 Context </s>, events: the: 1 cats: 2 dogs: 4 Context dogs, events: bark: 1 chase: 3 Context chase, events: the: 1 cats: 1 birds: 2

#### Held-out data:

#### </s> birds chirp </s>

#### Training data (bigram-counts representation):

Context the, events: cats: 1 birds: 1 Context meow, events: </s>: 1 Context birds, events: chirp: 1 </s>: 2 Context chirp, events: </s>: 1 Context cats, events: meow: 1 </s>: 2 chase: 1 Context bark, events: </s>: 1 Context \$</s>, events: the: 1 cats: 2 dogs: 4 Context dogs, events: bark: 1 chase: 3 Context chase, events: the: 1 cats: 1 birds: 2

#### Held-out data:

#### Training data (bigram-counts representation):

Context the, events: cats: 1 birds: 1 Context meow, events: </s>: 1 Context birds, events: chirp: 1 </s>: 2 Context chirp, events: </s>: 1 Context cats, events: meow: 1 </s>: 2 chase: 1 Context bark, events: </s>: 1 Context </s>, events: the: 1 cats: 2 dogs: 4 Context dogs, events: bark: 1 chase: 3 Context chase, events: the: 1 cats: 1 birds: 2

#### Held-out data:

Maximum-likelihood estimation gives *no* generalization to unseen events in the *n*-gram representation

| <b>W</b> -1 | Wi    | Count |
|-------------|-------|-------|
| dogs        |       | 0     |
| dogs        | bark  |       |
| dogs        | birds | 0     |
| dogs        | chase | 3     |
| dogs        | dogs  | 0     |
| dogs        | the   | 0     |

$$\widehat{P}_{\text{Laplace}}(w_i|w_{i-n+1}\dots w_{i-1}) = \frac{\text{Count}(w_{i-n+1}\dots w_{i-1}w_i) + 1}{\text{Count}(w_{i-n+1}\dots w_{i-1}) + V}$$

| <b>W</b> -1 | Wi    | Count |
|-------------|-------|-------|
| dogs        |       | 0     |
| dogs        | bark  |       |
| dogs        | birds | 0     |
| dogs        | chase | 3     |
| dogs        | dogs  | 0     |
| dogs        | the   | 0     |

$$\widehat{P}_{\text{Laplace}}(w_i|w_{i-n+1}\dots w_{i-1}) = \frac{\text{Count}(w_{i-n+1}\dots w_{i-1}w_i) + 1}{\text{Count}(w_{i-n+1}\dots w_{i-1}) + V}$$

| <b>W</b> -1 | Wi    | Count | Add-one count |
|-------------|-------|-------|---------------|
| dogs        |       | 0     |               |
| dogs        | bark  |       | 2             |
| dogs        | birds | 0     |               |
| dogs        | chase | 3     | 4             |
| dogs        | dogs  | 0     |               |
| dogs        | the   | 0     |               |

$$\widehat{P}_{\text{Laplace}}(w_i|w_{i-n+1}\dots w_{i-1}) = \frac{\text{Count}(w_{i-n+1}\dots w_{i-1}w_i) + 1}{\text{Count}(w_{i-n+1}\dots w_{i-1}) + V}$$

| <b>W</b> -1 | Wi    | Count | Add-one count |
|-------------|-------|-------|---------------|
| dogs        |       | 0     |               |
| dogs        | bark  |       | 2             |
| dogs        | birds | 0     |               |
| dogs        | chase | 3     | 4             |
| dogs        | dogs  | 0     |               |
| dogs        | the   | 0     |               |

#### Add a "pseudo"-count to each <context,event> pair

| <b>W</b> -1 | Wi    | Count | Add-one count |
|-------------|-------|-------|---------------|
| dogs        |       | 0     |               |
| dogs        | bark  |       | 2             |
| dogs        | birds | 0     |               |
| dogs        | chase | 3     | 4             |
| dogs        | dogs  | 0     |               |
| dogs        | the   | 0     |               |

#### Add a "pseudo"-count to each <context,event> pair

| <b>W</b> -1 | Wi    | Count | Add-one count |
|-------------|-------|-------|---------------|
| dogs        |       | 0     |               |
| dogs        | bark  |       | 2             |
| dogs        | birds | 0     |               |
| dogs        | chase | 3     | 4             |
| dogs        | dogs  | 0     |               |
| dogs        | the   | 0     |               |
| bark        |       |       |               |
| bark        | bark  | 0     |               |
| bark        | birds | 0     |               |
| bark        | chase | 0     |               |
| bark        | dogs  | 0     |               |
| bark        | the   | 0     |               |

#### Add a "pseudo"-count to each <context,event> pair

| <b>W</b> -1 | Wi    | Count | Add-one count |
|-------------|-------|-------|---------------|
| dogs        |       | 0     |               |
| dogs        | bark  |       | 2             |
| dogs        | birds | 0     |               |
| dogs        | chase | 3     | 4             |
| dogs        | dogs  | 0     |               |
| dogs        | the   | 0     |               |
| bark        |       |       | 2             |
| bark        | bark  | 0     |               |
| bark        | birds | 0     |               |
| bark        | chase | 0     |               |
| bark        | dogs  | 0     |               |
| bark        | the   | 0     |               |

#### Add a "pseudo"-count to each <context,event> pair

| <b>W</b> -1 | Wi    | Count | Add-one count |
|-------------|-------|-------|---------------|
| dogs        |       | 0     |               |
| dogs        | bark  |       | 2             |
| dogs        | birds | 0     |               |
| dogs        | chase | 3     | 4             |
| dogs        | dogs  | 0     |               |
| dogs        | the   | 0     |               |
| bark        |       |       | 2             |
| bark        | bark  | 0     |               |
| bark        | birds | 0     |               |
| bark        | chase | 0     |               |
| bark        | dogs  | 0     |               |
| bark        | the   | 0     |               |

#### Add a "pseudo"-count to each <context,event> pair

$$\widehat{P}_{\text{Laplace}}(w_i|w_{i-n+1}\dots w_{i-1}) = \frac{\text{Count}(w_{i-n+1}\dots w_{i-1}w_i) + 1}{\text{Count}(w_{i-n+1}\dots w_{i-1}) + V} \longleftarrow \text{vocabulary size}$$

| <b>W</b> -1 | Wi    | Count | Add-one count |
|-------------|-------|-------|---------------|
| dogs        |       | 0     |               |
| dogs        | bark  |       | 2             |
| dogs        | birds | 0     |               |
| dogs        | chase | 3     | 4             |
| dogs        | dogs  | 0     |               |
| dogs        | the   | 0     |               |
| bark        |       |       | 2             |
| bark        | bark  | 0     |               |
| bark        | birds | 0     |               |
| bark        | chase | 0     |               |
| bark        | dogs  | 0     |               |
| bark        | the   | 0     |               |

 $\widehat{P}_{MLE}(</\mathrm{s}>|\mathrm{bark})=1$ 

$$\widehat{P}_{\text{Laplace}}(w_i|w_{i-n+1}\dots w_{i-1}) = \frac{\text{Count}(w_{i-n+1}\dots w_{i-1}w_i) + 1}{\text{Count}(w_{i-n+1}\dots w_{i-1}) + V} \longleftarrow \text{vocabulary size}$$

|               | <b>W</b> -1 | Wi    | Count | Add-one count |
|---------------|-------------|-------|-------|---------------|
|               | dogs        |       | 0     |               |
|               | dogs        | bark  |       | 2             |
|               | dogs        | birds | 0     |               |
|               | dogs        | chase | 3     | 4             |
|               | dogs        | dogs  | 0     |               |
|               | dogs        | the   | 0     |               |
| 1             | bark        |       |       | 2             |
| 1             | bark        | bark  | 0     |               |
| $\frac{1}{6}$ | bark        | birds | 0     |               |
|               | bark        | chase | 0     |               |
|               | bark        | dogs  | 0     |               |
|               | bark        | the   | 0     |               |

$$\widehat{P}_{MLE}(|\mathrm{bark}) = 1$$
$$\widehat{P}_{Laplace}(|\mathrm{bark}) = \frac{1}{6}$$

$$\widehat{P}_{\text{Laplace}}(w_i|w_{i-n+1}\dots w_{i-1}) = \frac{\text{Count}(w_{i-n+1}\dots w_{i-1}w_i) + 1}{\text{Count}(w_{i-n+1}\dots w_{i-1}) + V} \longleftarrow \text{vocabulary size}$$

|                                                       | <b>W</b> -1                                                          | Wi    | Count | Add-one count |  |  |  |
|-------------------------------------------------------|----------------------------------------------------------------------|-------|-------|---------------|--|--|--|
|                                                       | dogs                                                                 |       | 0     |               |  |  |  |
|                                                       | dogs                                                                 | bark  |       | 2             |  |  |  |
|                                                       | dogs                                                                 | birds | 0     |               |  |  |  |
|                                                       | dogs                                                                 | chase | 3     | 4             |  |  |  |
|                                                       | dogs                                                                 | dogs  | 0     |               |  |  |  |
|                                                       | dogs                                                                 | the   | 0     |               |  |  |  |
| $\hat{D}$ ( ( )   1 ) 1                               | bark                                                                 |       |       | 2             |  |  |  |
| $\widehat{P}_{MLE}( \mathrm{bark}) = 1$               | bark                                                                 | bark  | 0     |               |  |  |  |
| $\widehat{P}_{Laplace}( \mathrm{bark}) = \frac{1}{6}$ | bark                                                                 | birds | 0     |               |  |  |  |
|                                                       | bark                                                                 | chase | 0     |               |  |  |  |
|                                                       | bark                                                                 | dogs  | 0     |               |  |  |  |
| Too much of                                           | bark                                                                 | the   |       |               |  |  |  |
|                                                       | • Too much added probability mass for rare (i.e., typical) contexts! |       |       |               |  |  |  |

# Generalized additive smoothing

We can also add less than 1 to each count

$$\widehat{P}_{\text{Laplace}}(w_i|w_{i-n+1}\dots w_{i-1}) = \frac{\text{Count}(w_{i-n+1}\dots w_{i-1}w_i) + \lambda}{\text{Count}(w_{i-n+1}\dots w_{i-1}) + \lambda V}$$

- But this doesn't turn out to do so great in practice, either (we'll see in practicum)
- Fundamental issue: we should make different generalizations about:
  - different contexts;
  - and different events.
- Additive smoothing accomplishes neither of these

 Suppose we have a unigram model and we also have a bigram model

- Suppose we have a unigram model and we also have a bigram model
- We could mix the two models' probabilities together:

- Suppose we have a unigram model and we also have a bigram model
- We could mix the two models' probabilities together:

- Suppose we have a unigram model and we also have a bigram model
- We could mix the two models' probabilities together:

 $P_{\text{Interpolated}}(w_i|w_{i-1}) = \lambda P(w_i|w_{i-1}) + (1-\lambda)P(w_i)$ 

 This modification of a standard bigram model makes different generalizations about different events

- Suppose we have a unigram model and we also have a bigram model
- We could mix the two models' probabilities together:

- This modification of a standard bigram model makes different generalizations about different events
  - How?

- Suppose we have a unigram model and we also have a bigram model
- We could mix the two models' probabilities together:

- This modification of a standard bigram model makes different generalizations about different events
  - How?
- Words that are more frequent overall become more expected regardless of context

- Suppose we have a unigram model and we also have a bigram model
- We could mix the two models' probabilities together:

- This modification of a standard bigram model makes different generalizations about different events
  - How?
- Words that are more frequent overall become more expected regardless of context
- Interpolation weights can also be a function of context:

- Suppose we have a unigram model and we also have a bigram model
- We could mix the two models' probabilities together:

 $P_{\text{Interpolated}}(w_i|w_{i-1}) = \lambda P(w_i|w_{i-1}) + (1-\lambda)P(w_i)$ 

- This modification of a standard bigram model makes different generalizations about different events
  - How?
- Words that are more frequent overall become more expected regardless of context
- Interpolation weights can also be a function of context:

 $P_{\text{Interpolated}}(w_i | w_{i-1}) = \lambda(w_{i-1}) P(w_i | w_{i-1}) + (1 - \lambda(w_{i-1})) P(w_i)$ 

- Suppose we have a unigram model and we also have a bigram model
- We could mix the two models' probabilities together:

 $P_{\text{Interpolated}}(w_i|w_{i-1}) = \lambda P(w_i|w_{i-1}) + (1-\lambda)P(w_i)$ 

- This modification of a standard bigram model makes different generalizations about different events
  - How?
- Words that are more frequent overall become more expected regardless of context
- Interpolation weights can also be a function of context:

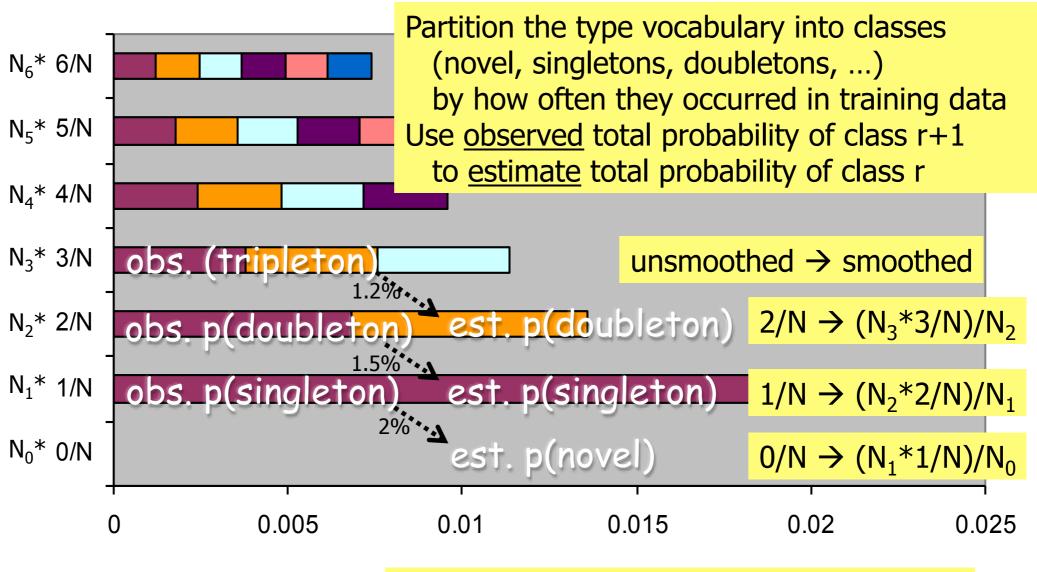
 $P_{\text{Interpolated}}(w_i | w_{i-1}) = \lambda(w_{i-1}) P(w_i | w_{i-1}) + (1 - \lambda(w_{i-1})) P(w_i)$ 

And we can extend this approach to higher-order n-grams

#### Idea 3: Leveraging a context's type diversity

 The more rare events a context has, the more new events we should expect!

#### **Good-Turing Smoothing Idea**



(Courtesy Jason Eisner)

 $r/N = (N_r * r/N)/N_r \rightarrow (N_{r+1} * (r+1)/N)/N_r$ 

I can't see without my reading\_

Define the **continuation probability** of a word as the number of <context,word> pairs it completes

$$P_{CONTINUATION}(w) = \frac{\left| \{w_{i-1} : c(w_{i-1}, w) > 0\} \right|}{\left| \{(w_{j-1}, w_j) : c(w_{j-1}, w_j) > 0\} \right|}$$

I can't see without my reading glasses

Define the **continuation probability** of a word as the number of <context,word> pairs it completes

$$P_{CONTINUATION}(w) = \frac{\left| \{w_{i-1} : c(w_{i-1}, w) > 0\} \right|}{\left| \{(w_{j-1}, w_j) : c(w_{j-1}, w_j) > 0\} \right|}$$

I can't see without my reading\_

Define the **continuation probability** of a word as the number of <context,word> pairs it completes

$$P_{CONTINUATION}(w) = \frac{\left| \{w_{i-1} : c(w_{i-1}, w) > 0\} \right|}{\left| \{(w_{j-1}, w_j) : c(w_{j-1}, w_j) > 0\} \right|}$$

I can't see without my reading Francisco

Define the **continuation probability** of a word as the number of <context,word> pairs it completes

$$P_{CONTINUATION}(w) = \frac{\left| \{w_{i-1} : c(w_{i-1}, w) > 0\} \right|}{\left| \{(w_{j-1}, w_j) : c(w_{j-1}, w_j) > 0\} \right|}$$

I can't see without my reading\_

Define the **continuation probability** of a word as the number of <context,word> pairs it completes

$$P_{CONTINUATION}(w) = \frac{\left| \{w_{i-1} : c(w_{i-1}, w) > 0\} \right|}{\left| \{(w_{j-1}, w_j) : c(w_{j-1}, w_j) > 0\} \right|}$$

#### **Kneser-Ney smoothing**

$$P_{KN}(w_i | w_{i-1}) = \frac{\max(c(w_{i-1}, w_i) - d, 0)}{c(w_{i-1})} + \lambda(w_{i-1})P_{CONTINUATION}(w_i)$$

$$\lambda(w_{i-1}) = \frac{d}{c(w_{i-1})} |\{w : c(w_{i-1}, w) > 0\}|$$

# Ideas we haven't implemented yet

- Generalizing across contexts or events in terms of their similarity to one another
- Varying the window of context that we consider
- Representing "proximity" to the event in non-linear terms