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Which did you hear?

Eyes awe of an

I saw a van



Which did you hear?

The sail of a boat

The sale of a boat



Which did you hear?

It’s not easy to wreck an ice beach
It’s not easy to wreck a nice beach

It’s not easy to recognize speech



Which did you hear?

A dog’s tale

A dog’s tail



Shannon’'s guessing game

START
—

(Shannon, 195 I;Taylor, 1953)



Radineg scralmbed wrods

1n tehy All btahree. unooncuiscs stay be
mmamals to to sttae for wehlas, need

selep, buscaee long, they cnnaot an too
conosculs i1dnncilug but

All mmamals selep, 1dnncilug wehlas, but
they cnnaot stay in an unooncuiscs sttae
for too long, buscaee tehy need to be
conoscuis to btahree.



Applications of language prediction

* In speech understanding, identify words incrementally!

cap tucked captain

e Especially challenging given segmentation ambiguity



Robustness in comprehension

(I uh, ijound.out that my grandmother was(%ne of a twinJ

The businessman benefited the tax law significantly.

(parsed Switchboard corpus; Gibson et al., 201 3)



Speaker modeling (e.qg., author ID)

* One of the oldest applications of probablllty in
computational linguistics! ;

Alexander James
Hamilton Madison

As the people are the only legitimate fountain of power, and it is from them that the
constitutional charter, under which the several branches of government hold their power,
IS derived, it seems strictly consonant to the republican theory, to recur to the same
original authority, not only whenever it may be necessary to enlarge, diminish, or new-

model the powers of the government, but also whenever any one of the departments may
commit encroachments on the chartered authorities of the others.
— Federalist 49, Publius

(Mosteller & Wallace, 1964) 10



Human comprehension difficulty

e Brains are prediction engines!
my brother came inside to... chat? wash? get warm?

the children went outside to...

e Predictable words are read faster (Enrlich & Rayner, 1981) and have
distinctive EEG responses (Kutas & Hillyard 1980)

 The more we expect an event, the easier it is to process
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Word responses

® )
. POeeeY
PREE e
@@ ®®
8 @ @

= 6 € & oo
 @0pe® <

Kutas & Hillyard, 1980

- 10uV N400
N
p )
\
|
l Aﬁ\ / \ \ 7 \'A‘-— r Y
PZ \.’} [\ S \_J
«1sec =
‘ v v v v v v v
. XXX XX It was his first day at WOrK.
-------- XXXXX He spread the warm bread  with  Socks.

12



Encoding meaning into words

* Relevant for human language production, spoken dialog
systems, machine translation, and more!

dog’s :1 dog’s tale

of a dog 1 tale of a dog
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Collocationality

* A collocation is a word sequence that appears
“unusually often”

e Consider the following word pairs in strength of the
collocate:

young childhood early childhood

mass destruction illegal destruction

good cuilsine ethnic cuisine

14



Word sequence frequencies

O h o

)

© ® (< (] books.google.com

Google Books Ngram Viewer

Graph these comma-separated a dog's tale,a dog's tail case-insensitive
phrases:
between 1800 and 2000 from the corpus ( English ¢ ) with smoothing of (3 #]. Search lots of books

Ngrams not found: a dog's tale
The Ngram Viewer is case sensitive. Check your capitalization!

Replaced a dog's tail with a dog 's tail to match how we processed the books.
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(click on line/label for focus)

Search in Google Books:

1800 - 1845 1846 - 1928 1929 - 1940 1941 - 1976 1977 - 2000 a dog’s tail 15



Modeling human knowledge of word sequences

* Many techniques, none perfect!
e Probabilistic grammars
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e n-gram models
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n-grams from chain rule decomposition

* Probability that next sentence is "dogs chase cats™?

P(wW = $ dogs chase cats $)

e Remember the chain rule'
P(xq,..., HP Tl T, .., i)

* Applying this to our sentence we get

P(w = $ dogs chase cats $) =P($|$ dogs chase cats)x
P(cats|$ dogs chase)x
P(chase|$ dogs)x
P(dogs|$)

e Simplify—e.g., assume w; Lw; _;_s|w;_1 t0 give us

P($ dogs chase cats $) ~ P($|cats)P(cats|chase)P(chase|dogs)P(dogs|$)

 MARKOV ASSUMPTION, giving a 2-gram (bigram) model



n-gram approximations of Shakespeare

gram

gram

gram

gram

—To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have
—Hill he late speaks; or! a more to leg less first you enter

—Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.
—What means, sir. I confess she? then all sorts, he is trim, captain.

—Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
‘t1s done.
—This shall forbid it should be branded, if renown made it empty.

—King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;
—It cannot be but so.

(courtesy Dan Jurafsky)
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n-gram approximations of the Wall Street Journal

1 Months the my and 1ssue of year foreign new exchange’s september

were recession exchange new endorsed a acquire to six executives
gram

Last December through the way to preserve the Hudson corporation N.
2 B. E. C. Taylor would seem to complete the major central planners one
gram  point five percent of U. S. E. has already old M. X. corporation of living
on information such as more frequently fishing to keep her

They also point to ninety nine point six billion dollars from two hundred
3 four oh six three percent of the rates of interest stores as Mexico and
gram  Brazil on market conditions

(courtesy Dan Jurafsky)
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Maximum likelihood n-gram estimation

* General scenario:
e You want to estimate conditional probabilities P(Y|X)
e You have training data consisting of some (X, Y)-pairs

* You have chosen a “model class” (a PARAMETERIZED
FAMILY of probability distributions)

* Bigram estimation:

e You want to estimate P(wilwi.1) in a language model

* YOou have some sentences

* YOou assume each wi.1 has its own multinomial over w;

<s> dogs chase cats </s> e
<s> dogs bark </s> the
<S> cats meow </s> ous
<s> dogs chase birds </s> chirp
<s> cats chase birds </s> chase
<s> dogs chase the cats </s> bids
<s> the birds chirp </s> P

(repeat slide from lecture 3)
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Maximum likelihood estimation

<s> dogs chase cats </s> o “_
<s> dogs bark)</s> C(Wu-l-dOQS,Wu-Chase)

<s> cats meow </s>
<s> dogs chase birds </s> C(Wi_1=dOgS,Wi=bdrk)
<s> cats chase birds </s>

<s> dogs chase the cats </s>
<s> the birds chirp </s> C(Wi_1=dOgS)

I
W

]
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T
N

e Consider each multinomial parameter
*e.g., let us call p the value of P(wi=bark|wi.1=dogs)
* S0 the value of P(w#bark|wi.1=dogs) is 1-p
* Likelihood for the part of the data where wi.1=dogs:

Wi-1 Wi

dogs chase 1 . 3
dogs bark p( p)

dogs chase
dogs chase

(repeat slide from lecture 3) 21



Maximum likelihood estimation

e p refers to the value of P(w=bark|wi1=dogs) Wi-1 Wi
» Likelihood for that part of data where wi.1=dogs: 3332 f,g?.ﬁe

dogs chase
dogs chase

0.10 -
This is choosing the

0.08 - maximum likelihood
estimate (MLE)

> 0.06 —
|
T 0,04 -
The MLE also turns
0.02 - out to be the relative
frequency estimate
O'OO__| | | | | | (RFE)

0.0 0.2 0.4 0.6 0.8 1.0
(repeat slide from lecture 3) 22



Why smooth n-gram models?

Training data (bigram-counts representation):

Context the, events: cats: 1 birds: 1

Context meow, events: </s>: 1

Context birds, events: chirp: 1 </s>: 2

Context chirp, events: </s>: 1

Context cats, events: meow: 1 </s>: 2 chase: 1
Context bark, events: </s>: 1

Context </s>, events: the: 1 cats: 2 dogs: 4
Context dogs, events: bark: 1 chase: 3

Context chase, events: the: 1 cats: 1 birds: 2

Held-out data:

</s> birds (chj_rp </s>> <— unseen bigram

Maximume-likelihood estimation gives no generalization to
unseen events in the n-gram representation

23



ldea 1: additive smoothing

* Add a “pseudo”-count to each <context,event> pair
COUDt(?Ui_n_|_1 ce wi_lwi) _I_.l
Count(w; ny1 - .. wi—1) HV) <— vocabulary size

PLaplace(wi‘wi—n—H SR wi—l) —

W-1 Wi Count
dogs </s> 0
dogs bark |
dogs bilrds 0
dogs chase 3
dogs dogs 0
dogs the 0

Pypp(</s>|bark) =1 _~Y

~ 1
PLaplace(</s>|bark) = 6

» Too much added probability mass for rare (i.e., typical) contexts!
24



Generalized additive smoothing

 We can also add less than 1 to each count

B COUHt(wi_n_|_1 ce wi_lw@-) -+ A
~ Count(wi_py1 ... wi—1) + AV

PLaplace (wi‘wi—n—I—l .. wi—l)

e But this doesn’t turn out to do so great in practice, either
(we’ll see in practicum)

e Fundamental issue: we should make different
generalizations about:

e different contexts;
e and different events.
» Additive smoothing accomplishes neither of these

25



ldea 2: model interpolation

* Suppose we have a unigram model and we also have
a bigram model

* We could mix the two models’ probabilities together:

PInterpolated(wi‘wi—l) — )\P(wz‘wz—l) + (1 — )\)P(wz)

* This modification of a standard bigram model makes
different generalizations about different events

e How?

* Words that are more frequent overall become more
expected regardless of context

* Interpolation weights can also be a function of context:
PInterpolated(wi‘wi—l) — )\(wi—l)P(wi‘wi—l) =+ (1 — )\(wi—l))P(wi)

 And we can extend this approach to higher-order n-grams
26



ldea 3: Leveraging a context’s type diversity

 The more rare events a context has, the more new
events we should expect!

Good-Turing Smoothing ldea

Partition the type vocabulary into classes

Ne* 6/N h . (novel, singletons, doubletons, ...)
- by how often they occurred in training data

Ns* SN | B Use observed total probability of class r+1
i to estimate total probability of class r
v+ 4N [ Probabily

RN 0bs. (Tripietomi unsmoothed > smoothed
- 1.29., _
SEFIN 0bs n(doublefonymestan(doubIeTon) L e (N2*3/N)N,
N:* 1N o IGTIGEM 1/N > (N,*2/N)/N,
- 20/0’0,-.\ |
No* O/N | 0/N = (N;*1/N)/N,
0 0.005 0.01 0.015 0.02 0.025

(Courtesy Jason Eisner) r/N = (N*r/N)/N. > (N, *(r+1)/N)/N. 57



ldea 4: leveraging an event's context diversity

| can’t see without my reading_Fgimssgso

Define the continuation probability of a word as the number
of <context,word> pairs it completes

‘{wl._1 c(w,_,,w)> O}‘

P
{w.w))e(w,,,w;)>0}

CONTINUATION (W) =

(example courtesy Dan Jurafsky) .



Kneser-Ney smoothing

max(c(w,_,,w,;)—d,0)

c(w,_,)

Pey(w, Tw,_ ) = + AW, Peovmvuarion (W)

Alw,_,) = d ‘{w c(w_,w)> O}‘

c(w,_,)
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ldeas we haven't implemented yet

* Generalizing across contexts or events in terms of
their similarity to one another

* Varying the window of context that we consider

e Representing “proximity” to the event in non-linear
terms

30



