
Introduction to language
models

Roger Levy
9.19: Computational Psycholinguistics

Which did you hear?

Eyes awe of an

I saw a van

2

Which did you hear?

The sail of a boat

The sale of a boat

3

Which did you hear?

It’s not easy to wreck an ice beach

It’s not easy to wreck a nice beach

It’s not easy to recognize speech

4

Which did you hear?

A dog’s tale

A dog’s tail

5

Shannon’s guessing game

6(Shannon, 1951; Taylor, 1953)

w e ␣ a r e ␣ s e e i n g ␣ t h ...
t h r h r e n i o e i n g ␣ a h
a e t a ␣ t i m
i ␣ n a i
z g h t
s n e
m a
i j
y t
w c

s

START

Radineg scralmbed wrods

7

in tehy All btahree. unooncuiscs stay be
mmamals to to sttae for wehlas, need
selep, buscaee long, they cnnaot an too
conoscuis idnncilug but

All mmamals selep, idnncilug wehlas, but
they cnnaot stay in an unooncuiscs sttae
for too long, buscaee tehy need to be
conoscuis to btahree.

Applications of language prediction
• In speech understanding, identify words incrementally!

• Especially challenging given segmentation ambiguity

8

cap tucked captain

Robustness in comprehension

9

I uh, I found out that my grandmother was one of a twin.

(parsed Switchboard corpus; Gibson et al., 2013)

I
a twin

a pair of twins
a set of twins

The businessman benefited the tax law significantly.

from

Speaker modeling (e.g., author ID)
•One of the oldest applications of probability in

computational linguistics!

10

Alexander
Hamilton

James
Madison

John
Jay

(Mosteller & Wallace, 1964)

As the people are the only legitimate fountain of power, and it is from them that the
constitutional charter, under which the several branches of government hold their power,
is derived, it seems strictly consonant to the republican theory, to recur to the same
original authority, not only whenever it may be necessary to enlarge, diminish, or new-
model the powers of the government, but also whenever any one of the departments may
commit encroachments on the chartered authorities of the others.
— Federalist 49, Publius

Human comprehension difficulty
• Brains are prediction engines!

 my brother came inside to…

 the children went outside to…

• Predictable words are read faster (Ehrlich & Rayner, 1981) and have
distinctive EEG responses (Kutas & Hillyard 1980)

• The more we expect an event, the easier it is to process

11

play

chat? wash? get warm?

Word responses

12

Pz

Encoding meaning into words
•Relevant for human language production, spoken dialog

systems, machine translation, and more!

13

dog’s tail dog’s tale

tail of a dog tale of a dog

6000:1

750:1

Collocationality
• A collocation is a word sequence that appears

“unusually often”
•Consider the following word pairs in strength of the

collocate:

14

young childhood early childhood

mass destruction illegal destruction

good cuisine ethnic cuisine

Word sequence frequencies

15

Modeling human knowledge of word sequences
•Many techniques, none perfect!
• Probabilistic grammars

• Neural network models

• n-gram models

16

Today

n-grams from chain rule decomposition
• Probability that next sentence is “dogs chase cats”?

•Remember the chain rule!

• Applying this to our sentence we get

• Simplify—e.g., assume to give us

•MARKOV ASSUMPTION, giving a 2-gram (bigram) model 17

P (~w = $ dogs chase cats $)

P (x1, . . . , xk) =
kY

i=1

P (xi|x1, . . . , xi�1)

P (~w = $ dogs chase cats $) =P ($|$ dogs chase cats)⇥
P (cats|$ dogs chase)⇥
P (chase|$ dogs)⇥
P (dogs|$)

wi?w1...i�2|wi�1

P ($ dogs chase cats $) ⇡ P ($|cats)P (cats|chase)P (chase|dogs)P (dogs|$)

n-gram approximations of Shakespeare

18

10 CHAPTER 4 • N-GRAMS

Imagine all the words of English covering the probability space between 0 and 1,
each word covering an interval proportional to its frequency. We choose a random
value between 0 and 1 and print the word whose interval includes this chosen value.
We continue choosing random numbers and generating words until we randomly
generate the sentence-final token </s>. We can use the same technique to generate
bigrams by first generating a random bigram that starts with <s> (according to its
bigram probability), then choosing a random bigram to follow (again, according to
its bigram probability), and so on.

To give an intuition for the increasing power of higher-order N-grams, Fig. 4.3
shows random sentences generated from unigram, bigram, trigram, and 4-gram
models trained on Shakespeare’s works.

1
–To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have

gram –Hill he late speaks; or! a more to leg less first you enter

2
–Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.

gram –What means, sir. I confess she? then all sorts, he is trim, captain.

3
–Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
’tis done.

gram –This shall forbid it should be branded, if renown made it empty.

4
–King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;

gram –It cannot be but so.
Figure 4.3 Eight sentences randomly generated from four N-grams computed from Shakespeare’s works. All
characters were mapped to lower-case and punctuation marks were treated as words. Output is hand-corrected
for capitalization to improve readability.

The longer the context on which we train the model, the more coherent the sen-
tences. In the unigram sentences, there is no coherent relation between words or any
sentence-final punctuation. The bigram sentences have some local word-to-word
coherence (especially if we consider that punctuation counts as a word). The tri-
gram and 4-gram sentences are beginning to look a lot like Shakespeare. Indeed, a
careful investigation of the 4-gram sentences shows that they look a little too much
like Shakespeare. The words It cannot be but so are directly from King John. This
is because, not to put the knock on Shakespeare, his oeuvre is not very large as
corpora go (N = 884,647,V = 29,066), and our N-gram probability matrices are
ridiculously sparse. There are V 2 = 844,000,000 possible bigrams alone, and the
number of possible 4-grams is V 4 = 7⇥1017. Thus, once the generator has chosen
the first 4-gram (It cannot be but), there are only five possible continuations (that, I,
he, thou, and so); indeed, for many 4-grams, there is only one continuation.

To get an idea of the dependence of a grammar on its training set, let’s look at an
N-gram grammar trained on a completely different corpus: the Wall Street Journal
(WSJ) newspaper. Shakespeare and the Wall Street Journal are both English, so
we might expect some overlap between our N-grams for the two genres. Fig. 4.4
shows sentences generated by unigram, bigram, and trigram grammars trained on
40 million words from WSJ.

Compare these examples to the pseudo-Shakespeare in Fig. 4.3. While superfi-
cially they both seem to model “English-like sentences”, there is obviously no over-

(courtesy Dan Jurafsky)

n-gram approximations of the Wall Street Journal

19

4.3 • GENERALIZATION AND ZEROS 11

1 Months the my and issue of year foreign new exchange’s september
were recession exchange new endorsed a acquire to six executives

gram

2
Last December through the way to preserve the Hudson corporation N.
B. E. C. Taylor would seem to complete the major central planners one

gram point five percent of U. S. E. has already old M. X. corporation of living
on information such as more frequently fishing to keep her

3
They also point to ninety nine point six billion dollars from two hundred
four oh six three percent of the rates of interest stores as Mexico and

gram Brazil on market conditions
Figure 4.4 Three sentences randomly generated from three N-gram models computed from
40 million words of the Wall Street Journal, lower-casing all characters and treating punctua-
tion as words. Output was then hand-corrected for capitalization to improve readability.

lap whatsoever in possible sentences, and little if any overlap even in small phrases.
This stark difference tells us that statistical models are likely to be pretty useless as
predictors if the training sets and the test sets are as different as Shakespeare and
WSJ.

How should we deal with this problem when we build N-gram models? One way
is to be sure to use a training corpus that has a similar genre to whatever task we are
trying to accomplish. To build a language model for translating legal documents,
we need a training corpus of legal documents. To build a language model for a
question-answering system, we need a training corpus of questions.

Matching genres is still not sufficient. Our models may still be subject to the
problem of sparsity. For any N-gram that occurred a sufficient number of times,
we might have a good estimate of its probability. But because any corpus is limited,
some perfectly acceptable English word sequences are bound to be missing from it.
That is, we’ll have a many cases of putative “zero probability N-grams” that should
really have some non-zero probability. Consider the words that follow the bigram
denied the in the WSJ Treebank3 corpus, together with their counts:

denied the allegations: 5
denied the speculation: 2
denied the rumors: 1
denied the report: 1

But suppose our test set has phrases like:

denied the offer
denied the loan

Our model will incorrectly estimate that the P(offer|denied the) is 0!
These zeros— things things that don’t ever occur in the training set but do occurzeros

in the test set—are a problem for two reasons. First, they means we are underes-
timating the probability of all sorts of words that might occur, which will hurt the
performance of any application we want to run on this data.

Second, if the probability of any word in the testset is 0, the entire probability of
the test set is 0. But the definition of perplexity is based on the inverse probability
of the test set. If some words have zero probability, we can’t compute perplexity at
all, since we can’t divide by 0!

(courtesy Dan Jurafsky)

Maximum likelihood n-gram estimation

•Bigram estimation:
• You want to estimate P(wi|wi-1) in a language model
• You have some sentences
• You assume each wi-1 has its own multinomial over wi

20

• General scenario:
• You want to estimate conditional probabilities P(Y|X)
• You have training data consisting of some ⟨X,Y⟩-pairs
• You have chosen a “model class” (a PARAMETERIZED

FAMILY of probability distributions)

<s> dogs chase cats </s>
<s> dogs bark </s>
<s> cats meow </s>
<s> dogs chase birds </s>
<s> cats chase birds </s>
<s> dogs chase the cats </s>
<s> the birds chirp </s> bark

birds
cats

chase
chirp
dogs
meow
the
</s>

P(wi|wi−1=bark)

0.0 0.2 0.4

bark
birds
cats

chase
chirp
dogs
meow
the
</s>

P(wi|wi−1=birds)

0.0 0.2 0.4

and so forth…

bark
birds
cats

chase
chirp
dogs
meow
the
</s>

P(wi|wi−1=<s>)

0.0 0.2 0.4

(repeat slide from lecture 3)

Maximum likelihood estimation

•Consider each multinomial parameter
• e.g., let us call p the value of P(wi=bark|wi-1=dogs)
• So the value of P(wi≠bark|wi-1=dogs) is 1-p
• Likelihood for the part of the data where wi-1=dogs:

21

<s> dogs chase cats </s>
<s> dogs bark </s>
<s> cats meow </s>
<s> dogs chase birds </s>
<s> cats chase birds </s>
<s> dogs chase the cats </s>
<s> the birds chirp </s>

c(wi-1=dogs,wi=chase) = 3

c(wi-1=dogs,wi=bark) = 1

c(wi-1=dogs) = 4

wi-1 wi
dogs chase
dogs bark
dogs chase
dogs chase

p(1� p)3

(repeat slide from lecture 3)

Maximum likelihood estimation
• p refers to the value of P(wi=bark|wi-1=dogs)
• Likelihood for that part of data where wi-1=dogs:

22

wi-1 wi
dogs chase
dogs bark
dogs chase
dogs chase

0.25 (=1/4)
!!!

This is choosing the
maximum likelihood

estimate (MLE)

The MLE also turns
out to be the relative

frequency estimate
(RFE)

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.02

0.04

0.06

0.08

0.10

p(
1
−
p)

3

(repeat slide from lecture 3)

Why smooth n-gram models?

23

Training data (bigram-counts representation):

Held-out data:

</s> birds chirp </s> unseen bigram

Maximum-likelihood estimation gives no generalization to
unseen events in the n-gram representation

Idea 1: additive smoothing
• Add a “pseudo”-count to each <context,event> pair

24

w-1 wi Count Add-one count
dogs </s> 0 1
dogs bark 1 2
dogs birds 0 1
dogs chase 3 4
dogs dogs 0 1
dogs the 0 1
bark </s> 1 2
bark bark 0 1
bark birds 0 1
bark chase 0 1
bark dogs 0 1
bark the 0 1

bPLaplace(wi|wi�n+1 . . . wi�1) =
Count(wi�n+1 . . . wi�1wi) + 1

Count(wi�n+1 . . . wi�1) + V

bPMLE(</s>|bark) = 1

bPLaplace(</s>|bark) = 1

6

• Too much added probability mass for rare (i.e., typical) contexts!

vocabulary size

Generalized additive smoothing
•We can also add less than 1 to each count

• But this doesn’t turn out to do so great in practice, either
(we’ll see in practicum)
• Fundamental issue: we should make different

generalizations about:
• different contexts;
• and different events.

• Additive smoothing accomplishes neither of these

25

bPLaplace(wi|wi�n+1 . . . wi�1) =
Count(wi�n+1 . . . wi�1wi) + �

Count(wi�n+1 . . . wi�1) + �V

Idea 2: model interpolation
• Suppose we have a unigram model and we also have

a bigram model
•We could mix the two models’ probabilities together:

• This modification of a standard bigram model makes
different generalizations about different events
• How?

•Words that are more frequent overall become more
expected regardless of context
• Interpolation weights can also be a function of context:

• And we can extend this approach to higher-order n-grams
26

PInterpolated(wi|wi�1) = �P (wi|wi�1) + (1� �)P (wi)

PInterpolated(wi|wi�1) = �(wi�1)P (wi|wi�1) + (1� �(wi�1))P (wi)

Idea 3: Leveraging a context’s type diversity

27

0 0.005 0.01 0.015 0.02 0.025

0/N

1/N

2/N

3/N

4/N

5/N

6/N

Good-Turing Smoothing Idea

N0*

N1*

N2*

N3*

N4*

N5*

N6*
Partition the type vocabulary into classes

(novel, singletons, doubletons, …)
by how often they occurred in training data

Use observed total probability of class r+1
to estimate total probability of class r

unsmoothed à smoothed

(N3*3/N)/N2

(N2*2/N)/N1

(N1*1/N)/N0

r/N = (Nr*r/N)/Nr à (Nr+1*(r+1)/N)/Nr

obs. p(singleton)
est. p(novel)

2%

obs. p(doubleton)
est. p(singleton)

1.5%

obs. (tripleton)
est. p(doubleton)

1.2%

2/N à (N3*3/N)/N2

1/N à (N2*2/N)/N1

0/N à (N1*1/N)/N0

(Courtesy Jason Eisner)

• The more rare events a context has, the more new
events we should expect!

Idea 4: leveraging an event’s context diversity
I	can’t	see	without	my	reading___________	

Define	the	connuaon	probability	of	a	word	as	the	number	
of	<context,word>	pairs	it	completes

28

glassesFrancisco

PCONTINUATION (w) =
{wi−1 : c(wi−1,w)> 0}

{(wj−1,wj) : c(wj−1,wj)> 0}

(example courtesy Dan Jurafsky)

Kneser-Ney smoothing

29

PKN (wi |wi−1) =
max(c(wi−1,wi)− d, 0)

c(wi−1)
+λ(wi−1)PCONTINUATION (wi)

λ(wi−1) =
d

c(wi−1)
{w : c(wi−1,w)> 0}

Ideas we haven’t implemented yet
•Generalizing across contexts or events in terms of

their similarity to one another
• Varying the window of context that we consider
•Representing “proximity” to the event in non-linear

terms

30

