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PRELIMINARIES

A person writes a research monograph such as this with the intention that
it will be read. As a consumer of such monographs, 1 know it is not an easy
decision to invest the time in reading and understanding one. Therefore, it
is important to be up front about what this book has to offer. In a few
words, this book describes a new methodology for doing research in
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2 1. INTRODUCTION

cognitive psychology and applies it to produce some important develop-
ments. The new methodology is important, because it offers the promise of
rapid progress on some of the agenda of cognitive psychology. This
methodology concentrates on the adaptive character of cognition, in
contrast to the typical emphasis on the mechanisms underlying cognition.

I have been associated with a number of theoretical monographs (An-
derson, 1976, 1983; Anderson & Bower, 1973). The sustaining question in
this succession of theories has been the nature of human knowledge. The
1973 book was an attempt to take human memory tradition as it had
evolved in experimental psychology and use the new insights of artificial
intelligence to relate the ideas of this tradition to fundamental issues of
human knowledge. The theory developed in that book was called HAM, a
propositional network theory of human memory. The 1976 book was
largely motivated by the pressing need to make a distinction between
procedural and declarative knowledge. This distinction was absent in the
earlier book and in the then-current literature on human memory. The
theory developed in that book was called ACT. In ACT, declarative
knowledge was represented in a propositional network and procedural
knowledge in a production system. The 1983 book was motivated both by
breakthroughs in developing a learning theory that accounts for the
acquisition of procedural knowledge and in identifying a neurally plausible
basis for the overall implementation of the theory. It was called ACT* to
denote that it was a completion of the theoretical development begun in the
previous book.

In the 1983 book on the ACT* theory, I tried to characterize its
relationship to the ACT series of theories and my future plans for research:
“. .. my plan for future research is to try to apply this theory wide and far,
to eventually gather enough evidence to permanently break the theory and
to develop a better one. In its present stage of maturity the theory can be
broadly applied, and such broad application has a good chance of
uncovering fundamental flaws” (Anderson, 1983, p. 19).

My method of applying the theory has been to use it as a basis for detailed
studies of knowledge acquisition in a number of well-defined domains such
as high-school mathematics and college-level programming courses. In
these studies, we have been concerned with how substantial bodies of
knowledge are both acquired and evolve to the point where the learner has
a very powerful set of problem-solving skills in the domain (Anderson,
Boyle, Corbett, & Lewis, in press; Anderson, Boyle, & Reiser, 1985;
Anderson, Conrad, & Corbett; in press).

The outcome of this research effort has certainly not been what I
expected. Despite efforts to prove the theory wrong (I even created a new
production system, called PUPS for Penultimate Production System, to
replace ACT* — Anderson & Thompson, 1989), I failed to really shake the
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old theory. As I have written elsewhere (Anderson, 1987¢; Anderson,
Conrad, & Corbett, in press), we have been truly surprised by the success of
the ACT* theory in dealing with the data we have acquired about complex
skill acquisition with our intelligent tutors. ACT* proved not to be
vulnerable to a frontal assault, in which its predictions about skill
acquisition are compared to the data. This book contains some theoretical
ideas that are rather different than ACT*, produced by the new method-
ology that the book describes. These ideas do not so much contradict ACT*
as they address the subject of human cognition in a different way.

The A in ACT* stands for Adaptive, and this book results from an effort
to think through what it might mean for human cognition to be adaptive.
However, this book is not cast as an update on the ACT* theory, but rather
is an effort to develop some points about human cognition from an
adaptive perspective. The majority of the book, the next four chapters, tries
to develop theory from an adaptive perspective in four related fields of
cognition. This chapter is devoted to setting the stage for that development.

To state up front where this chapter is going, the argument is that we can
understand a lot about human cognition without considering in detail what
is inside the human head. Rather, we can look in detail at what is outside the
human head and try to determine what would be optimal behavior given the
structure of the environment and the goals of the human. The claim is that
we can predict behavior of humans by assuming that they will do what is
optimal. This is a different level of analysis than the analysis of mental
mechanisms that has dominated information-processing psychology.
Having raised the possibility of levels of analysis, the questions arise as to
just how many levels there are and why we would want to pursue one level
rather than another. It turns out that there have been many ideas expressed
on these topics in cognitive science. Rather than just present my position on
this and pretend to have invented the wheel, it is appropriate to review the
various positions and their interrelationships. However, if the reader is
impatient with such discussion, it is possible to skip to the section in the
chapter that presents “The New Theoretical Framework,” where the discus-
sion of rational analysis begins.

LEVELS OF A COGNITIVE THEORY

Table 1-1 is a reference for this section, in that it tries to relate the
terminology of various writers. I start with the analysis of David Marr,
which I have found to be particularly influential.

Marr's System of Levels

No sooner had I sent in the final draft of the ACT* book to the publisher
than I turned to reading the recently published book by Marr (1982) on
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vision. It contained a very compelling argument about how to do theory
development. I read over and over again his prescription for how to proceed
in developing a theory:

We can summarize our discussion in something like the manner shown in
Figure 1-4 [our Table 1-2}, which illustrates the different levels at which an
‘ information-processing device must be understood before one can be said to
have understood it completely. At one extreme, the top level, is the abstract
computational theory of the device, in which the performance of the device is
characterized as a mapping from one kind of information to another, the
abstract properties of this mapping are defined precisely, and its appropri-
ateness and adequacy for the task at hand are demonstrated. In the center is
the choice of representation for the input and output and the algorithm to be
used to transform one into the other. And at the other extreme are the details
‘ of how the algorithm and representation are realized physically — the detailed
§ ‘ computer architecture, so to speak. These three levels are coupled, but only
loosely. The choice of an algorithm is influenced, for example, by what it has
to do and by the hardware in which it must run. But there is a wide choice
available at each level, and the explication of each level involves issues that are
rather independent of the other two (pp. 24-25).

Although algorithms and mechanisms are empirically more accessible, it is the
top level, the level of computational theory, which is critically important from
an information-processing point of view. The reason for this is that the nature
of the computations that underlie perception depends more upon the compu-
tational problems that have to be solved than upon the particular hardware in
which their solutions are implemented. To phrase the matter another way, an
algorithm is likely to be understood more readily by understanding the nature
of the problem being solved than by examining the mechanism (and the
I hardware) in which it is embodied.

In a similar vein, trying to understand perception by studying only neurons
is like trying to understand bird flight by studying only feathers: It just cannot

TABLE 1-2

i Marr's Description of the Three Levels at Which Any Machine Carrying out an
; Information-Processing Task Must be Understood

Computational Representation Hardware

Theory and Algorithm Implementation

What is the goal of the How can this computational  How can the representation
computation, why is it theory be implemented? In and algorithm be realized
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the logic of the strategy by representation for the input

P which it can be carried out? and output, and what is

the algorithm for the trans-
formation?
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be done. In order to understand bird flight, we have to understand aerody-
namics; only then do the structure of feathers and the different shapes of
birds’ wings make sense. More to the point, as we shall see, we cannot
understand why retinal ganglion cells and lateral geniculate neurons have the
receptive fields they do just by studying their anatomy and physiology. We
can understand how these cells and neurons behave as they do by studying
their wiring and interactions, but in order to understand why the receptive
fields are as they are—why they are circularly symmetrical and why their
excitatory and inhibitory regions have characteristic shapes and distribu-
tions—~we have to know a little of the theory of differential operators,
band-pass channels, and the mathematics of the uncertainty principle (pp.
27-28).

Marr’s terminology of “computational theory” is confusing and certainly
did not help me appreciate his points. (Others have also found this
terminology inappropriate —e.g., Arbib, 1987). His level of computational
theory is not really about computation but rather about the goals of the
computation. His basic point is that one should state these goals and
understand their implications before one worries about their computation,
which is really the concern of the lower levels of his theory.

Marr’s levels can be understood with respect to stereopsis. At the
computational level, there is the issue of how the pattern of light on each
retina enables inferences about depth. The issue here is not how it is done,
but what should be done. What external situations are likely to have given
rise to the retinal patterns? Once one has a theory of this, one can then
move to the level of representation and algorithm and ‘'specify a procedure
for actually extracting the depth information. Having done this, one can
finally inquire as to how this procedure is implemented in the hardware of
the visual system.

Marr compared his computational theory to Gibson’s (1966) ecological
optics. Gibson claimed that there were certain properties of the stimulus
which would invariantly signal features in the external world. In his
terminology, the nervous system “resonates” to these invariants. Marr
credited Gibson with recognizing that the critical question is to identify
what in the stimulus array signals what in the real world. However, he
criticized Gibson for not recognizing that, in answering this question, it is
essential to precisely specify what that relationship is. The need for
precision is apparent to someone, like Marr, working on computer vision.
This need was not apparent to Gibson (see Shepard, 1984, for an extensive
analysis of Gibson’s theory).

I tried to see how to apply Marr’s basic admonition to my own concern,
which was higher-level cognition, but it just did not seem to apply.
Although Marr’s prescription seemed fine for vision, it seemed that the
representation and algorithm level was the fundamental level for the study
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of human coguition. It was certainly the level that information-processing
psychology had progressed along for the last 30 years.

What I initially failed to focus on was the essential but unstated
adaptionist principle in Marr’s argument. Vision could be understood by
studying a problem only if (a) we assumed that vision was a solution to that
problem, (b) we assumed that the solution to that problem was largely
unique, and (c) we assumed that something forced vision to adopt that
solution. For instance, in the case of stereopsis, we had to assume that
vision solved the problem of extracting the three-dimensional structure
from two two-dimensional arrays, and there was usually a single best
interpretation of two two-dimensional arrays. Analysis of the visual
environment of humans suggests that there is usually a best interpretation.
To pursue Marr’s agenda, it is not enough to argue that there is a unique
best solution; we also have to believe that there are adaptive forces that
created a visual system that would deliver this best solution. Perhaps other
aspects of cognition deal with problems that have best solutions, and the
organism is similarly adapted to achieve these best solutions. Once I cast
what Marr was doing in these terms, I saw the relevance of his arguments
to cognition in general.

Marr’s hardware-implementation level may still be inapplicable to the
study of cognition. It made sense in the case of vision, where the physiology
is reasonably well understood. However, the details of the physical base of
cognition are still unclear.

Marr’s analysis of these levels is very much motivated by the issue of how
to make progress in cognitive science. As he saw it, the key to progress is to
start off at the level of computational theory. As he bemoaned about the
practice of theory in vision:

For far too long, a heuristic program for carrying out some task was held to
be a theory of that task, and the distinction between what a program did and
how it did it was not taken seriously. As a result, (1) a style of explanation
evolved that invoked the use of special mechanisms to solve particular
problems, (2) particular data structures, such as the lists of attribute value
pairs called property lists in the LISP programming language, were held to
amount to theories of the representation of knowledge, and (3) there was
frequently no way to determine whether a program would deal with a
particular case other than by running the program. (Marr, 1982, p. 28)

These problems certainly characterize the human information-processing
approach to higher level cognition. We pull out of an infinite grab bag of
mechanisms, bizarre creations whose only justification is that they predict
the phenomena in a class of experiments. These mechanisms are becoming
increasingly complex, and we wind up simulating them and trying to
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understand their behavior just as we try to understand the human. We
almost never ask the question of why these mechanisms compute in the way
they do. ’

Chomsky’s Competence and Performance

Marr related his distinction to Chomsky’s much earlier distinction between
competence and performance in linguistics, identifying his computational
theory with Chomsky’s competence component. As Chomsky (1965) de-
scribed the distinction:

Linguistic theory is concerned primarily with an ideal speaker-listener, in a
completely homogeneous speech-community, who knows its language per-
fectly and is unaffected by such grammatically irrelevant conditions as
memory limitations, distractions, shifts of atteation and interest, and errors
{(random or characteristic) in applying his knowledge of the language in actual
performance. This seems t0 me to have been the position of the founders of
modern general linguistics, and no cogent reason for modifying it has been
offered. To study actual linguistic performance, we must consider the
interaction of a variety of factors, of which the underlying competence of the
speaker-hearer is only one. In this respect, study of language is no different
from empirical investigation of other complex phenomena.

We thus make a fundamental distinction between competence (the speaker-
hearer’s knowledge of his language) and performance (the actual use of
language in concrete situations). Only under the idealization set forth in the
preceding paragraph is performance a direct reflection of competence. In
actual fact, it obviously could not directly reflect competence. A record of
natural speech will show numerous false starts, deviations from rules, changes
of plan in mid-course, and so on. The problem for the linguist, as well as for
the child learning the language, is to determine from the data of performance
the underlying system of rules that has been mastered by the speaker-hearer
and that he puts to use in actual performance. (pp. 3—4)

The competence-performance distinction has been the source of a great
deal of confusion and controversy. The relationship between competence
and performance is really not the same as the relationship between Marr’s
level of computational theory and his lower levels.! In Marr’s case, the
lower levels achieve the goals of the computational level. Chomsky’s
competence level is a theory based on a certain subset of data that is thought
to be a direct and reliable reflection of the person’s linguistic knowledge.
For instance, judgments of whether a sentence is grammatically well formed

'Consequeantly, some people have questioned why I mentioned Chomsky’s distinction at all,
The answer is that Chomsky and Marr relate their distinctions to one another, and Chomsky’s
distinction is very well known.
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provide key data for a theory of competence, but time to understand a
sentence is thought to be less stable and is consigned to a theory of
performance. Performance is somehow constrained to reflect the compe-
tence, but it reflects other factors as well. Unlike Marr’s case, performance
is not just a matter of implementing the goals of competence. Indeed, unlike
Marr’s computational-level, Chomsky’s competence is not concerned with
the goals of the system. A computational-level theory of language would
have to be concerned with the functionality of language—a concern that
Chomsky explicitly rejected. In fact, in contrast to all the other proposals
for a higher level, Chomsky’s competence is unique, in that it explicitly
eschews concerns with functionality. Therefore, it is removed from the
other levels in Table 1-1. It is better not thought of as a level in the sense of
Marr’s levels.

Still, Chomsky used the competence level to serve the same role in theory
building as Marr used computational theory. Under both analyses, the
scientist should first work out the higher level. Both felt that this was a key
to making progress. Also, the lower levels are constrained somehow to
reflect the higher levels.

Pylyshyn's Distinction Between Algorithm and
Functional Architecture

Pylyshyn (1984) distinguished between three levels that are quite analogous
to Marr’s three levels. These he called the semantic level, the symbolic level,
and the biological level. He developed the semantic level with respect to
Newell’s concept of a knowledge level, and we turn to reviewing that
concept extensively at the end of this section. He had little to say about the
biological level beyond making standard arguments for its inadequacy as
the sole level of psychological explanation. Of major interest is a distinction
he developed within the symbolic level, between mental algorithms and the
functional architecture (Pylyshyn, 1980). These are two levels sandwiched
between the biological and the semantic. They are very important levels,
because they are the levels at which most cognitive psychologists have aimed
their research.

The algorithm level is an abstract specification of the steps a system must
go through to perform a process. This specification is abstracted away from
the functional architecture that actually implements the steps of the
algorithm. As Pylyshyn (1984) described the functional architecture:

It includes the basic operations provided by the biological substrate, say, for
storing and retrieving symbols, comparing them, treating them differently as
a function of how they are stored, (hence, as a function of whether they
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represent beliefs or goals), and so on, as well ds such basic resources and
constraints of the system, as a limited memory. It also includes what computer
scientists refer to as the “control structure”, which selects which rules to apply
at various times {p. 30).

Despite his reference to biology, Pylyshyn’s functional architecture is an
abstraction above the biological level. The analogy Pylyshyn used is that the
distinction between the algorithm level and the functional architecture
corresponds to the distinction between a canonical computer program and
its machine implementation. Pylyshyn’s assertion is that there is a particular
distinguished algorithm level, rather than the situation in computers where
there can be layers of languages each compiling into a lower level. As he
wrote: “Rather than a series of levels, we have a distinguished level, the level
at which interpretation of the symbols is in the intentional, or cognitive,
domain or in the domain of the objects of thought” (Pylyshyn, 1984, p. 95).

One of the examples Pylyshyn used to illustrate the distinction between
algorithm and functional architecture is the process of answering questions
like “If John is taller than Mary and John is shorter than Fred, who is the
tallest?” At the algorithm level, one could imagine a procedure for
answering such questions in which each of the premises (e.g., John is taller
than Mary) requires placing the terms in an ordered list, and answering the
question involves reading off the person at one end of the list. Such a
procedure could be implemented in one of many programming languages
that would involve a set of instructions. Pylyshyn’s interpretation of the
algorithm level seems to be, really, the specific programming language
rather than the general procedure. The functional architecture would be
concerned with the implementation of the instructions of that programming
language on a particular machine. Thus, the functional architecture might
tell us how long it takes to insert an element into a list or how long it takes
to read off the item at the end of the list,

As argued in Anderson (1987a), the assumptions of the ACT* theory can
be sorted into assumptions about the algorithm level and assumptions about
functional architecture. In ACT®, there is one set of production system
principles for representing knowledge states and determining transitions
among these knowledge states and another set of principles for computing
activation levels for the knowledge structures that determine how these
knowledge structures map onto the specifics of behavior like response time.
The first set of assumptions is about the algorithm level, and the second is
about the functional architecture. Amazingly, I did not realize that the
assumptions of my theory were at two levels until 1984 (Anderson, 1984),
when I began to think about the implications of the theory for intelligent
tutoring. Curiously, it seemed that only the algorithm level had implications
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for intelligent tutoring, and intelligent tutoring only had implications for
the algorithm level,

Pylyshyn introduced an interesting principle to distinguish what belongs
to the functional architecture from what belongs to the algorithm level:

Cognitive Impenetrability. The operations at the functional architec-
ture level are not affected by the organism’s goals and beliefs.

Thus, to call up the standard Sternberg (1969) model of memory scanning,
although goals and beliefs determine what digits the subject will compare
with what digits, the actual process of comparing one digit to another (the
famous 35-40 msec) is not affected by goals and beliefs. Thus, the process
of incorporating the experimenter’s instructions is at the algorithm level,
whereas the actual memory scan is at the level of functional architecture.
Cognitive impenetrability gets at the essence of the difference between a
symbolic and a subsymbolic level. Only the symbolic level should be
influenced by the semantic contents of our knowledge.

McClelland and Rumelhart's PDP Level

A major new surge (to say the least) in cognitive science has been the
appearance of connectionist theories, which try to model cognition in terms
of units thought to reflect some aspects of neuronal functioning. Some
question has arisen as to the level at which such connectionist theories are
cast. It might seem obvious that they should be identified with the hardware
level of Marr. However, Rumelhart and McClelland (1985), in their reply to
Broadbent (1985), noted that their connectionist models (which they call
PDP models —see McClelland & Rumelhart, 1986; Rumelhart & McClel-
land, 1986) are considerably abstracted from the hardware level and are
really at the algorithm and representation level. As noted with respect to
Pylyshyn’s levels (see Table 1-1), Marr’s representation and algorithm level
can be broken into at least two levels, the levels that Pylyshyn called the
algorithm level and the level of functional architecture. In Pylyshyn’s ter-
minology, connectionist models are theories at the level of the functional
architecture.

Rumelhart and McClelland (1986) argued that the algorithm level is not
a real level, but rather that emergent properties of their functional
architecture may approximate the rules that other theorists propose for the
algorithm level. As they wrote:

There is still another notion of levels which illustrates our view. This is the
notion of levels implicit in the distinction between Newtonian mechanics on
the one hand and quantum theory on the other. It might be argued that
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conventional symbol processing models are macroscopic accounts, analogous
to Newtonian mechanics, whereas our models offer more microscopic ac-
counts, analogous to quantum theory. Note, that over much of their range,
these two theories make precisely the same predictions about behavior of
objects in the world. Moreover, the Newtonian theory is often much simpler
to compute with since it involves discussions of entire objects and ignores
much of their internal structure. However, in some situations Newtonian
theory breaks down. In these situations we must rely on the microstructural
account of quantum theory. Through a thorough understanding of the
relationship between the Newtonian mechanics and quantum theory we can
understand that the macroscopic level of description may be only an
approximation to the more microscopic theory, Moreover, in physics, we
understand just when the macrotheory will fail and the microtheory must be
invoked. We understand the macrotheory as a useful formal tool by virtue of
its relationship to the microtheory. In this sense the objects of the macro-
theory can be viewed as emerging from interactions of the particles described
at the microlevel. (p. 125)

Under some interpretation, McClelland and Rumelhart must be right that
the brain only approximates the symbolic rules we ascribe to it. However,
the interesting question is, “Under what interpretation?”. A computer only
approximates the program it is implementing—there are failures of mem-
ory, interrupt device processes, overhead of operating systems, small surges
of voltage, and so on. However, the approximation in the case of the
computer is clearly both good and faithful. The Rumelhart and McCleland
enterprise is based on the belief that the brain approximation of the
algorithm level is neither good nor faithful. Thus, their point is not just that
it is an approximation (surely their own PDP models are approximations in
some sense) but that the algorithm level often can be a bad approximation
that misses the essence of the behavior at hand.

Their basic reason for believing that the algorithm level is a bad
approximation is their belief that learning is defined at the lower level. They
used a compiler analogy to make their point. In their analogy, the algorithm
level corresponds to a PASCAL program and the lower level to assembly
code. Their view is that the mind programs itself at the assembly code level,
and the assembly code can only be approximated by PASCAL code.

As they wrote in Rumelhart and McClelland (1985), “Because there is
presumably no compiler to enforce the identity of our higher level and lower
level descriptions in science, there is no reason to suppose there is a higher
level description exactly equivalent to any particular lower level description”
(pp. 195-196). Or, as they wrote in Rumelhart and McClelland (1986),
“Since there is every reason to suppose that most of the programming that
might be taking place in the brain is taking place at a ‘lower level’ rather
than a ‘higher level' it seems unlikely that some particular higher level
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description will be identical to some particular lower level description” (pp.
124-125).

I'think they are wrong in this point and that their arguments in the quoted
passages are so weak as to be vacuous. The reasoning implicit in both of
these passages is basically, “We don’t know how the brain does it, therefore
it cannot” (i.e., an argument from ignorance). The psychological reality of
the algorithm level is very much an empirical question to be decided by
whether there are phenomena that can only be explained at this level. A
great many phenomena of higher level cognition currently only have
explanations at the algorithm level. This includes much of syntactic
processing (Pinker & Prince, 1988), almost all of problem solving (Newell &
Simon, 1972), learning of problem-solving skills (Anderson, 1981a), and
human deduction (Johnson-Laird, 1983). Indeed, there is very little of what
is conventionally called “thinking,” which has been treated by connectionist
models, let alone successfully treated. On the other hand, when we turn to
the implementation of these thinking processes, such as memory for the
facts being used, connectionist models enjoy great success.

The connectionists are focused on the level of functional architecture,
because they believe that this level offers the key insights for making
progress towards a successful scientific theory. Rather than the Marr-
Chomsky approach of trying to guarantee some overall correctness or
well-formedness of the computation, their concern is that the computation
takes place in something at least approximating neural elements. As they
wrote:

We have found that information concerning brain-style processing has itself
been very provocative in our model building efforts. Thus, we have, by and
large, not focused on neural modeling (i.e., the modeling of neurons), but
rather we have focused on neurally inspired modeling of cognitive processes.
Our models have not depended strongly on the details of brain structure or on
issues that are very controversial in neuroscience. Rather, we have discovered
that if we take some of the most obvious characteristics of brain-style
processing seriously we are led to postulate models which differ in a number
of important ways from those postulated without regard for the hardware on
which these algorithms are to be implemented. We have found that top-down
considerations revolving about a need to postulate parallel, cooperative
computational models (cf. Rumelhart, 1977) have meshed nicely with a
number of more bottom-up considerations of brain style processing. {(Rumet-
hart & McClelland, 1986, p. 130).

In writing the ACT* book, I was much concerned with this argument and
tried to make that theory neurally realistic. I have since come to seriously
question the force of the neural constraint for two reasons. As they noted
in the preceding quote, our knowledge of neural mechanisms is weak. Thus,
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it is not clear what are “the most obvious characteristics of brain-style
processing,” and their neural assumptions may not correspond to what
actually happens in the brain, as Crick and Asanuma (1986) complained
with respect to PDP models. On the other hand, we may think certain
things cannot happen that do and so unnecessarily restrict ourselves. So, we
may very well be misguided by a premature insistence on neural fidelity.

However, my deeper concern is that it is not clear that the neural concerns
provide much constraint, misguided or not. It is unclear what one cannot
predict by a suitable arrangement of neural elements given that they are
computationally universal. Even more disturbing, it seems that there are
multiple arrangements of neural-like elements that will produce the same
phenomena. That is, even if we restrict ourselves to some circumscribed
class of neural models, like the PDP class, we will have the identifiability
problems that have haunted all cognitive science theorizing at this level.
Rather than too much constraint, it is likely to be, once again, a matter of
too little.

Newell’s Knowledge Level and the
Principle of Rationality

As stated in the discussion of Pylyshyn and the PDP models, it is standard
practice in cognitive psychology to work at what is variously called the
symbol level (Pylyshyn), or the level of representation and algorithm
(Marr). No one doubts the existence of a biological level below the symbol
level, but we choose to work at the higher level, either because we believe we
do not have adequate evidence about the biological level or because we
believe we can make progress on psychological issues more rapidly by
working at a higher level of abstraction. However, few until Marr and
Newell had suggested that it was possible that there was a useful level of
analysis above the symbol level, Newell formulated this as his knowledge
level hypothesis.

The Knowledge Level Hypothesis. There exists a distinct computer
systems level, lying immediately above the symbol level, which is charac-
terized by knowledge as the medium and the principle of rationality as the
law of behavior ( Newell, 1982,p. 99).

As the preceding quote indicates, Newell’s development of the knowledge
level was originally with respect to computer systems, but he extended it to
the human situation. Newell saw a lot of similarity between levels of
analysis for the computer and levels of analysis for the human. When
speaking of computers, he used the terms program or symbol level to refer
to what Pylyshyn called the algorithm level, the term register-transfer level
to refer to functional architecture, and device level to refer to the biological
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level. However, our focus is on his knowledge level, which corresponds to
Pylyshyn’s semantic level. His statement of this level has proven to be quite
influential in artificial intelligence.

The concept that gives precision to Newell’s knowledge level is the
principle of rationality. As Newell (1982) stated it,

Principle of Rationality. “If an agent has knowledge that one of its
actions will lead to one of its goals, then the agent will select that action,”
(p. 102).

There are a number of undefined terms in this specification, but he did
develop what he meant by each:

Goals. The organism is assumed to want certain states of affairs to
come to be,

Selection. The claim is that the organism will perform one of the actions
it knows to achieve its goals. An important complication is that it is possible
that multiple actions will achieve a goal or that multiple goals will conflict
in the action they will call for. Here, the knowledge level is silent (although
lower levels will not be). It just places constraints on actions, it does not
uniquely prescribe them.

Implication. What does it mean to have knowledge that an action will
lead to a goal? Newell had in mind the idea that the knowledge logically
implies the goal, although he did not want to commit himself at this
knowledge level to a particular symbol system to implement the logic.

Knowledge. An obvious definition for knowledge might be something
like “whatever the person has encoded from experience,” but Newell
avoided this, perhaps because it seems impossible to know or even set
bounds on what a person might encode from an experience or perhaps
because he was writing about computers and not about people. Rather, he
offered the following definition: “Whatever can be ascribed to an agent,
such that its behavior can be computed according to the principle of
rationality” (Newell, 1982, p. 105).

Many people suspect circularity upon reading these various assertions of
Newell. Newell’s basic position may be summarized thusly: “Knowledge and
goals imply behavior.” Basically, there are three terms related by the
principle of rationality — goals, knowledge, and behavior. Given any two,
one can infer or predict the third. Thus, if we know a person’s goals and
observe his behavior, we can infer his knowledge. Now that we have
determined his knowledge, if we manipulate his goals, we should be able to
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predict his new behavior. Thus, we see that this implicational structure
allows us to infer knowledge from one situation and make potentially
disconfirmable predictions in a new situation. The appearance of circularity
is only iliusory.

The important feature of the knowledge level is that it allows an analysis
of human behavior abstracted away from any assumptions about the
symbols or processes in the human head. For instance, it does not matter
whether the person knows Spinoza was a human and Humans have color
vision and infers Spinoza has color vision, or whether the person has that
fact directly represented. In either case, we can predict what the person will
say to the question “Did Spinoza have color vision?” This is because we
assume that we know the person’s goal (to answer the question) and
because, in either case, the principle of rationality predicts the same answer.
The difference between these two knowledge representations is a non-
distinction as far as the knowledge level is concerned. Note that the
knowledge level only predicts the behavior, not how long it takes to
calculate it.

Analysis at the knowledge level leads to considerable predictive force.
Thus, we can predict that the thirsty person will drink the water offered to
him quite independent of any psychological theory at the symbol level.
Similarly, we can predict what answer my son will give to a subtraction
problem. Indeed, what is amazing to me as a cognitive psychologist
(perhaps not amazing to any other type of person) is just how much of
human behavior can be predicted without recourse to any of the standard
machinery of cognitive psychology. However, there are clear difficulties for
the knowledge level. Their clarity is further testimony to the fact that the
level has precision.

The example Newell used to show the problems at the knowledge level is
the fact that the knowledge level analysis would imply that someone who
knows the rules of chess would play a perfect game, because such a game
logically follows from this knowledge. To this, Newell acknowledged that
the knowledge level is a “radical approximation,” and, at many points,
predictions derived from it would be overriden by considerations from a
lower level, such as the impossibility of searching the game tree for chess in
finite human time.

The knowledge level has much in common with Marr’s computational
level. Both are concerned with the issue of how the goals of the system
constrain the behavior of the system. Newell’s essential insight is that in the
case of cognition, in contrast to vision, a major constraint takes place
through the knowledge the person has acquired. However, in contrast to
Marr, we do not find Newell making any claims that understanding the
knowledge level is a prerequisite to doing research on other agenda in the
study of cognition. Indeed, most of Newell’s efforts have focused on the
symbolic level and the constraint of having this system match the universal
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computability of the human system.? He has taken both biological and
rational considerations simply as further constraints on his development of
the symbol system.

As mentioned earlier, Newell avoided defining knowledge in terms of
experience. As becomes apparent throughout the book, I think a principle
of rationality should be defined in terms of a person’s experience and not
knowledge. The implications of experience are uncertain and fundamentally
probabilistic, whereas the implications of knowledge are certain. Because it
is experience that people have direct access to and not knowledge, our
analysis of what behavior is rational has to face up to the probabilistic
structure of uncertainty. As is argued in this chapter, some of the claims
about human irrationality make the fallacy of treating uncertain experience
as certain knowledge.

CURRENT FORMULATION OF THE LEVELS ISSUE

It is possible to amalgamate the ideas in the literature into a summary
formulation that starts with the three levels of Marr’s formulation and

~ incorporates Pylyshyn’s division of the second level into a level of algorithm

and functional architecture. Thus, there are four levels of analysis that I call
the rational level, the algorithm level, the implementation level, and the
biological level. The highest level is called the rational level both because it
is defined in terms of a principle of rationality (not quite Newell’s; my
principle of rationality is introduced shortly hereafter). The next level is
called the algorithm level. The third level is called the implementation level,
rather than Pylyshyn’s level of functional architecture, because of difficul-
ties with the use of the word architecture.® The lowest level is the biological
level. Pylyshyn’s term biological level is preferable to Marr’s hardware level
or Newell’s device level, because it makes clear that we are talking about
what is in the brain and not what is in the computer.

Having settled on names for these levels, however, does not settle the
issue of their psychological reality. First, I begin with a bold assertion:
When all is said and done and we know the truth about what is happening
in the human brain, there will turn out to be only two levels of analysis that
are psychologically real (i.e., in the brain). They are the algorithm level and
the biological level. Marr had it right, and, despite practice in cognitive
psychology, there is no intermediate implementation level except as an
approximation useful in calculation. That is to say, Rumelhart and
McClelland have it just wrong—it is not the algorithm level that has the

?Indeed, Marr (1982) was quite critical of Newell for this emphasis.
3As discussed in Anderson (1987a), architecture is better used to refer to the interface
between the algorithm level and the implementation level.
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status of Newtonian mechanics; it is the implementation level. The imple-
mentation level is an approximation to the biological level. We need it
because we do not begin to know enough about the brain to specify the
biological level. Thus, we need the implementation level as a computational
approximation and as a holding position. Without it, as Pylyshyn has
argued, we would not have any interpretation of the costs of the operations
at the algorithmic level and would not be able to predict the temporal or
reliability properties of various mental algorithms. However, it should be
recognized as an approximation. There is no convincing evidence or
argument that there is any real level between the biological and the
algorithm level.

Not only does the implementation level lack true psychological reality, it
has identifiability problems. That is to say, it is not possible to decide
between many claims about the implementation level, such as whether
processes are going on in parallel or serial (Townsend, 1974), the format of
the knowledge representation (Anderson, 1978), or whether there is a
distinct short-term memory (Crowder, 1982a). Of course, if implementation
level theories are just crude approximations, there will be real limitations on
our ability to discriminate among theories, because one cannot perform
exacting tests of an approximate theory. However, the identifiability
problem goes beyond this approximation limitation: The relationship of the
implementation level to behavioral data is too indirect to allow identifia-
bility, even if it were not an approximation, I expand on this issue of
identifiability in the next section.

The Algorithm Level*

Given my pessimism about the reality and tractability of the implementa-
tion level, it might seem remarkable that I am optimistic in both senses
about the algorithm level. The fundamental reason for my optimism about
the reality of the algorithm level is my belief in Newell and Simon’s (1976)
physical symbol hypothesis, which Newell (1980a) stated as “The necessary
and sufficient condition for a physical system to exhibit general intelligent
action is that it be a physical symbol system” (p. 170). A physical symbol
system is a system that manipulates symbols. Symbols, as they are used in
the physical symbol hypothesis, are tokens that in essence are pointers to
knowledge stored elsewhere. For instance, a variable, as it is used in a
computer program, is a symbol. Symbols are basically the structures out of
which the algorithm level is defined. This physical symbol hypothesis is
basically a conjunction of two observations: (a) The only way we know how

*For a more complete discussion of the research issues at the algorithm level, read Anderson
(1987a).
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to achieve intelligence is by use of symbols, and (b) we now know a
(growing) number of ways in which symbols can be implemented and
manipulated in physical systems. From (a) and (b) the argument is made
that the only way physical systems (including humans) can achieve their
intelligence is by use of symbols.

The argument for the physical symbol hypothesis could be strengthened
if we could argue that symbols are the only way to achieve intelligence,
rather than the only known way, as just argued. The best argument that 1
have read to this effect is one that was recently made by Newell (in press):

It is a law of nature that processing in the physical world is always local, that
is, always takes places in a limited region of physical space. This is equivalent
to there being no action at a distance, or, somewhat more specifically, that
causal effects propagate with an upper velocity of ¢, the speed of light in
vacuo. Consequently, any computational system ultimately does its work by
localized processing within localized regions in space. What guides or
determines this processing task must then also be local. If the task is small
enough or simple enough, then the processes could have been assembled
within the local region and the task accomplished. Ultimately, there is no
alternative to doing it this way. However, with complex enough processing,
additional structure from outside the local region will be required at some
point during the processing. If it is required, it must be obtained. If it must be
obtained, then some process must do it, using structure within the local region
to determine when and how to go outside.

The symbol token is the device in the medium that determines where to go
outside the local region to obtain more structure. The process has two phases:
first, the opening of access to the distal structure that is needed; and second,
the retrieval (transport) of that structure from its distal location to the local
site, so it can actually affect the processing. When to go outside is determined
by when the processing encounters the symbol token in a fashion that requires
the missing structure. . . .

Hidden in this account is the basic proposition behind information theory,
namely, that for a given technology there is a limit to the amount of structure
that can be obtained in a given region of physical space. In information theory
this is expressed as the channel or memory capacity, and it is measured in bits.
But its foundation is the amount of variety in physical structure, given that
there is a limit to the amount of energy that is available to detect it. It applies
to all systems, discrete and continuous (Shannon, 1949). Thus, as the
demands for variety increase — corresponding ultimately to the demands for
variety in functions to be composed, the local capacity will be exceeded and
distal access will be required to variety elsewhere. Thus, there must be
something within the local site that indicates what additional knowledge is
needed.

To summarize: All processing must be done locally. Only so much
knowledge can be stored locally. True intelligence can require using
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unbounded knowledge. Hence, we need the access and retrieval functions
that are the essence of symbols. Newell’s argument leaves open the question
of how much of human cognition involves symbols, because much of
human cognition does not involve unbounded use of knowledge.

Given that the algorithm level is tied to symbols, it is the level at which
Pylyshyn’s principle of cognitive penetrability applies. It is here that
knowledge is brought to bear with full force and so can influence cognition.
In addition to cognitive penetrability, my conception of the algorithm level
is distinguished by the fact that steps of cognition at the algorithm level are
correlated with observable behaviors. It is this issue of relationship to
behavioral data that we turn to next.

Behavioral Data

Under the ACT* theory and many other theories, steps of cognition at the
algorithm level correspond to points of discrete changes in working
memory. In ACT*, these discrete changes are produced by a production
firing that enters new information into working memory. In contrast, a step
of cognition at the implementation level in ACT* corresponds to a change
in activation pattern. In ACT*, these changes in activation pattern are
continuous, and even when simulated discretely there will be 10-100 of
these steps at the implementation level before there is a step at the algorithm
level (i.e., a production firing).

It is important that different states at the algorithmic level are correlated
with changes in working memory states. A change in the state of working

memory can result in external behaviors. Thus, one can use the steps of -

behavior of a subject to infer the steps of cognition at the algorithm level.
Of course, steps at the algorithm level can pass by without any behavior,
but much of the methodology of cognitive science can be aimed at bringing
out behavioral indicants. [ have used the term protocol to refer to any rich
sequence of behaviors elicited by the experimenter to try to trace changes in
working memory. Verbal protocols are the most common protocol meth-
odology and succeed in situations where states of working memory are
verbally reportable. However, other protocol methodologies include use of
streams of terminal interactions (keystrokes, mouse clicks) or eye move-
ments, and, in many situations, such methodologies might be preferable.
The essence of a protocol is that it provide a running series of responses that
can be used to infer the sequence of mental states.

Protocols, at their best, offer the prospect of providing a state-by-state
description of the transitions at the algorithmic level, and the scientist is
simply left with the task of inducing the rules that determine these
transitions. Protocols in real life are never so fine-grained as to report every
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state, nor are the reports sufficiently rich to discriminate between all
possible pairs of states; however, they are a major advance over the
situation at the implementation level. There are problems with the use of
protocols and many more incorrect criticisms of their use (see Ericsson &
Simon, 1984, for a thorough discussion of the issues). Many of the false
criticisms of protocols stem from the belief that they are taken as sources of
psychological theory rather than as sources of data about states of the
mind. To serve the latter function, one need not require that the subject
accurately interpret his mental states, but only that the theorist can specify
some mapping between his behavior and states of the mind.

Note that the argument is not that the algorithm level has behavioral
consequences and the implementation level does not. Rather, it is that the
transitions at the algorithm level have direct behavioral indicants, whereas
the transitions at the implementation level are only indirectly inferable
from the behavioral indicants at the algorithm level. As an example of this
point, consider the Sternberg task. In this task, subjects are shown a small
study set of digits and then asked to decide whether a particular test digit is
in that set. At the algorithm level, this can be modeled as a rather trivial
task (e.g., see the ACT* model in Anderson, 1983): A single step is
involved in deciding whether the test digit is in the memory set or not. A
unique behavioral indicant of this is given— the subject says “yes” or “no.”
The Sternberg task has been of interest as a domain in which to study the
implementation level., Many theories (Baddeley & Ecob, 1973; Glass, 1984;
Sternberg, 1969, 1975; Theios, Smith, Haviland, Troupmann, & Moy,
1973) have been proposed in which detailed comparisons are being carried
out between the test digit and the items in memory set either in serial or
parallel. The behavioral data that has principally been used to decide
among such theories is reaction time —the time for subjects to make this
judgment. This does not give us a behavioral indicant for each step in the
process but rather only a final datum. As a consequence of the poverty of
the data relative to the complexity of the implementation level theories, it is
generally regarded as impossible to decide such issues as whether the

- comparisons are being performed in serial or parallel.

This identification of the algorithm level with the behavioral function of
the cognitive system is more abstract than the interpretation advocated by
Anderson (1987a) or by Pylyshyn (1984), who basically identified it with a
programming language. A programming language comes with a commit-
ment to a particular syntax and potentially has implementation constraints.
Rather, our use of algorithm is at a level of abstraction more like its typical
use in computer science where it is an abstract specification of computation
that can be realized in many computer languages. Issues of syntax are issues
of architecture, namely the notation that interfaces the algorithm level and
the implementation level.
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The Rational Level

So far, I have discussed three levels of analysis: a biological level, which is
real but almost inaccessible to cognitive theorizing, the approximate but
essential implementation level, and the real and accessible algorithmic level.
Is there a higher level where we should begin our inquiry, as Marr and
Chomsky have advocated? As indicated in Table 1-1, I think there is a
higher level, called the rational level, which is close in character to Marr’s
computational level. This book is mainly devoted to developing theory at
the rational level, although it contains some speculations about how this
relates to issues at other levels.

The rational level of analysis offers a different cut at human behavior. It
is not an attempt to propose an information-processing analysis of mind at
some level of aggregation from the molecular to the behavioral. It is not
“psychologically real,” in the sense that it does not assert that any specific
computation is occurring in the human head. Rather, it is an attempt to do
an analysis of the criteria that these computations must achieve to assure the
rationality of the system. This turns out to be an important level at which
to develop psychological theory, but a theory at this level is not directly
about what the mechanisms of the mind are. Rather, it is about constraints
on the behavior of the system in order for that behavior to be optimal. If we
assume that cognition is optimized, these behavioral constraints are con-
straints on the mechanisms. This level of analysis is important, because it
can tell us a lot about human behavior and the mechanisms of the mind.
The function of this book is to demonstrate the usefulness of the rational
level of analysis.

The idea that we might understand human behavior by assuming it is
adapted to the environment is hardly new. It started with the functionalist
school in the beginnings of American psychology (e.g., Dewey, 1910;
James, 1892). More recently, it has been associated with psychologists such
as Brunswik (1956), Campbell (1974), and Gibson (1966). We have already
discussed at length the adaptionist basis of Marr's contribution to vision.
Neisser's (1976; 1982) emphasis on understanding cognition in ecologically
valid situations has adaptionist components to its motivation. Cosmides
(1989) and Shepard (1987) represent recent efforts to develop analyses with
very explicit evolutionary connections. Shepard’s work is particularly close
to the material in Chapter 3 and we will include there some specific
discussion of his theory.

Thus, in proposing a rational analysis of human cognition I can hardly
claim to have invented the wheel. However, there is something quite
different about the wheel that is being described in this book. This is a result
of both how rational analysis is related to the various levels of a cognitive
theory and because of the particular research program attached to rational
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analysis. It is more in keeping with the spirit of the rational-man analysis in
economics (from which it borrowed its name) than with most other
applications in psychology (the spirit is similar, however, to Marr and
Shepard). In particular, it leads us to formal models of the environment
from which we derive behavior. Thus, its spirit is one which focuses us on
what is outside the head rather than what is inside and one which demands
mathematical precision. The next section of this chapter describes the new
theoretical framework associated with rational analysis.

THE NEW THEORETICAL FRAMEWORK

Although the proposals in this book differ in some details from other
proposals advanced in the ACT* book, the more substantial difference
concerns the philosophy from which they are developed. This philosophy
comes from merging a negative conclusion about the goals of cognitive
science with a positive conclusion about its prospects. On the negative side,
I bave come to appreciate the profound lack of identifiability in the
enterprise of cognitive science. On the positive side, I have come to realize
the considerable guidance that rational considerations provide. I first
consider the negative point and then the positive.

Lack of Identifiability at the Implementation Level

Cognitive psychology would be a rather unreal science if we worked only at
the algorithm level. Qur minds are not abstract algorithms left to compute
away but have significant temporal and reliability properties. Thus, one has
to consider implementation-level issues, but it is rather dissatisfying to
pursue implementation-level theories in face of their identifiability prob-
lems. Because the rational level offers a different cut at cognition (rather
than a higher level of abstraction), it allows one to pursue issues of the
temporal and reliability properties of human cognition in a way that is free

-from problems of approximation and identifiability. It also allows one to

view these properties as design features of the human mind, rather than as
design flaws. Thus, the issue of identifiability proves to be a substantial part
of the motivation for the rational analyses of this book. This subsection is
devoted to making that point in more detail.

If we confine ourselves to behavioral data, then by definition all we can
see are the steps of mind at the algorithm level. Even here we do not really
see the steps of the mind, but rather their behavioral consequences. Any
theory of cognition that confines itself to behavioral data has to be judged
by how well it does at predicting the specific behaviors that occur in
response to specific experiences. That is, we are limited to what goes into
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the system and what comes out—where “what comes out” includes things
like response latency or intensity. A large fraction of cognitive psycholo-
gists —myself included — have taken as our goal to induce what is happening
in the mind at the implementation level from this information. Recall that
the implementation level is concerned with a model of the mental steps that
take place between overt behaviors.

1 have tip-toed around the feasibility of this enterprise for the last 10
years, because it would be unpopular to say it could not be done. However,
the pretense can no longer be maintained, and so I will bluntly say that it is
just not possible to use behavioral data to develop a theory of the
implementation level in the concrete and specific terms to which we have
aspired. A number of people have argued elaborate special cases of this
non-identifiability (Anderson, 1978; Townsend, 1974). The general case can
be argued so simply that it is hard to believe that the field has not accepted
the conclusion long ago.

Basically, what we are trying to induce is the function that maps input to
output. We choose to specify this function as a set of mechanisms, but this
should not obscure the fact that these mechanisms compute an input-
output function, and it is this function that we can empirically test. Said
another way, if two different sets of mechanisms compute the same
input-output function, there is no way to discriminate among them. Now,
one of the simple things we know from work on formal machine theory is
that there is an infinite number of mechanisms that compute the same
input-output functions. That is, there is a many-to-one mapping from
mechanisms to behavioral functions, and, consequently, identifying the
behavioral function will not identify the mechanism. So, behavioral data
will never tell us what is in the mind at the implementation level. It is time
we stopped fooling ourselves.’

Responses to Lack of Ident{fiability. There are three standard responses
to this dilemma. One is to appeal to parsimony and assume that the simplest
set of mechanisms is correct. This might offer some hope of deciding within
a circumscribed class of machines like Turing machines, but parsimony is
meaningless when we compare different classes of computing mechanisms,
such as PDP models and production systems. It is not possible to define an
objective and acceptable metric to compare the parsimony of theories in
such different formalisms. The inability of advocates of either class to
make headway in arguing against the other should convince us of that.
Second, as has been argued elsewhere (Anderson, 1983), it stretches
credulity beyond any reasonable bounds to assume that nature chose the

*In the Appendix, I deal with counter claims based on considerations of computational
complexity and processing time.
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most parsimonious design for the mind. Thus, even if parsimony were
capable of settling scientific disputes, it has no chance of telling us what is
in the human head.

The second response is to argue optimistically that if we have enough data
from enough phenomena of sufficient complexity, then the identifiability
problem would go away. The supposed insight is that if we have enough
behavioral constraints, there will be only one mechanism that satisfies
them. However, identifiability problems do not go away with behavioral
complexity. Again, this is easy to see in formal function and machine
theory. There are lots of equivalent versions of complex Turing machines.
All the complexity does is make it harder to choose. In general, identifia-
bility problems are simpler when the behavior is simpler. There are a lot
fewer programs that might be reasonably written® to write “hello” than to
parse a sentence. Indeed, my reason for optimism about identifiability at
the algorithm level is that at that level of abstraction we have to account for
simple one-step transitions between reportable states rather than complex
sequences of unobserved computations.

The third response to the identifiability problem is to appeal to physio-

~ logical data to help tell us what is going on. The advantage of physiological

data is that it offers the potential of providing a one-to-one tracing of the
implementation level, just as protocols provide the potential for that kind
of tracing of the algorithm level. Our knowledge of the mechanisms of early
vision has developed because of physiological data. The right kind of
physiological data to obtain is that which traces out the states of compu-
tation of the brain. Although there is still far to go, there has been
considerable recent progress on this score (Dawson & Scheil, 1982; Don-
chen, McCarthy, Kutas, & Ritter, 1983; Farah, 1988; Phelps & Massiotta,
1985; Posner, Peterson, Fox, & Raichle, 1988; Roland & Friberg, 1985).
The wrong kind of physiological constraint is to make arguments based on
things like speed of neural processing. As witness that this is the wrong kind
of constraint, three very different theories (ACT* — Anderson, 1983;
SOAR~—Newell, in press; and PDP—McClelland & Rumelhart, 1986;
Rumelhart & McClelland, 1986) have been proposed and defended in terms
of neural timing.

Conclusion About the Identifiability Issue. The study of cognitive
behavior is an interesting and worthwhile endeavor, despite the identifia-
bility problem at the implementation level. We are making important
progress in the absence of physiological data. For many purposes, such as
application to education, such a physiological base would be excess

By “reasonable” I mean to exclude programs with useless steps. If we were to allow them,
the identifiability problem would only be worse.
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baggage. However, when we are inducing a scientific theory from behav-
ioral data, we should not lose track of what we are doing. We are inducing
an abstract function that maps input to output. We need a notation for
codifying that function so we can communicate it to others, reason about it,
and derive predictions. This is what our cognitive architectures and
implementation theories provide us with—a system of notation for speci-
fying the function. We should not ascribe any more ontological significance
to the mechanisms of that architecture than we do to an integral sign in a
calculus expression. If two theorists propose two sets of mechanisms in two
architectures that compute the same function, then they are proposing the
same theory. There are still bases for choosing among notations such as
simplicity and tractability, but we are not choosing among scientific
theories when we do so; we are choosing among notations for the same
theory according to their convenience. To summarize, the argument is not
that we should abandon developing implementation theory, but rather that
their scientific claims should be read as the abstract behavioral functions
they compute, not the specific mechanisms proposed. Part of the attraction
of a rational approach is that it provides a way of specifying these functions
without commitment to mechanism.

It should be clear how this position resembles behaviorism and how it
differs. Behaviorism was correct in its usually unstated assumption that you
cannot infer the mechanisms in the black box from what goes in and what
comes out. It was incorrect in going from that to its claims that there should
be restrictions on the notation with which theories are stated. The conse-
quences of these restrictions was to produce theories that were incapable of
computing the complex cognitive functions that people could. Said another
way, the inadequacy of behaviorism was not its claim that a scientific theory
was a mapping from stimulus to response but in the unnecessary restrictions
it placed on the computational power of the mapping. All successful
criticisms of behaviorist theories have focused on their computational
power. The success of modern cognitive psychology stems from the
computational power of our theories.

The Principle of Rationality

One of the consequences of our excessive concern with mechanism is that
we often act as if God created the mind more or less arbitrarily, out of bits
and pieces of cognitive mechanisms, and our induction task is to identify an
arbitrary configuration of mechanisms. Of course, this is not the modern
scientific understanding of human nature. The human is not a random
construction but a construction that has been, to some degree, optimized to
its environment by evolution. The behavior computed by our cognitive
mechanisms must be optimized to some degree and in some sense. If we
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could only specify that degree and sense, we would be in a position to place
enormous constraints on our proposals for cognitive mechanisms, both at
the implementation level and the algorithm level. This is the strongest
appeal of a rational approach.

Evolutionary Optimization. It is a hard issue to specify to what degree
and in what sense we would expect to see human cognition optimized. 1
have tried to work through current ideas about evolutionary optimization (a
very controversial area—see Dupre, 1987, for a representative set of
readings). Here is my summary of the consensus (such as there is one) cast
in terms familiar to a cognitive scientist rather than the terms from that
literature: At any stable point in evolution, a species shouid display a range
of variability in traits. The differences in this range are not sufficiently
important in their adaptive value that any have been selected out. There
may be some change in the species during this stable stage because of a
phenomenon known as genetic drift, in which the distribution of nonsig-
nificant variability changes. The optimization process might get called on if
some truly novel genetic variation is created by some random mutation.
However, it is generally thought that optimization is more generally called
in when the environment undergoes some significant change after which the
former range of traits is no longer equivalent in terms of adaptive value.
This is the view that sees changes in the environment as more significant in
driving evolutionary history than are random changes in genetic code.

The significance of this viewpoint is that it characterizes evolution as a
local optimizer. I understand this in terms of a hill-climbing metaphor in
which the set of possible traits defines the space, and the adaptive value
defines height. At a stable point in time, the species is at some point or
plateau of a local maximum. When there is an environmental change, the
contours of the space change, and the species may no longer be at a
maximum. It will climb along the slope of steepest ascent t0 a new
maximum and reside there. Extinction of a species occurs when it is not
possible to adapt to the environmental changes. New species appear when
different members of one species evolve to adapt to different environments.
This means that the optimum that any species achieves is a function of the
constraints of its past. Maybe humans would be better adapted with the
social structure of insects, but given our mammaliam origins, there is no
path of hill climbing from where we are to this hypothetical global
maximum.

Within the hillclimbing metaphor, there are two major constraints on
prediction by optimization analyses. One is the proximity structure on the
space of traits, and the other is where the species currently is in that space.
Only certain variations are reachable from its current location. So consider
the case of the moths of Manchester that serve as a standard illustration of
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evolutionary optimization. When pollution became a major factor in
Manchester, the former peppered gray moth was no longer optimal in
avoiding predators, and a mutant black moth largely replaced it. There are
other conceivable morphological responses to predators as effective—or
more so—than changing color. For instance, one could imagine the
development of offensive weapons such as possessed by other insects.
However, moth mutants with offensive weapons do not occur, but color
mutants do. Thus, color was a direction that was open for hill-climbing, but
offensive weaponry was not.”This means that any species or aspect of a
species is optimized, subject to some constraints that depend on evolu-
tionary history and that can be pretty arbitrary and complex. The more
arbitrary and complex these constraints, the less explanation there will be in
appealing to optimization. The general lesson we can take from optimiza-
tion explanations is that, in some cases, much explanatory power is
achieved by appealing to optimization, and, in other cases, little explana-
tory power is achieved. Optimal foraging theory (e.g., Stephens & Krebs,
1986) is a field where we see a full range of explanatory outcomes from an
optimization analysis. My book explores the question of how much
explanatory power can be achieved in the case of human cognition. In
particular, this book is an exploration of the following hypothesis.

General Principle of Rationality. The cognitive system operates at all
times to optimize the adaptation of the bebavior of the organism.

I have called this the principle of rationality, because it has a lot in
common with the economist’s position that people are rational agents and
their economic behavior can simply be predicted on the assumption that
they optimize their economic self-interests. This is a controversial position
and one that it seems most people view as wrong, at least in detail (Hogarth
& Reder, 1986). It is also generally viewed in psychology that people are
anything but rational creatures and that their intellectual functions are shot
through with intellectual fallacies. I try to reconcile the current position
with this general wisdom in psychology in the last section of this chapter.

Part of the problem is with the term rationality. It has evolved two senses
in social science. Perhaps the more obvious sense (which is close to Newell’s
sense) is that humans explicitly engage in logically correct reasoning in
deciding what to do. Criticisms of human rationality are often arguments
that humans do not do this. The second sense is that human behavior is
optimal in terms of achieving human goals. This is the position in
economics and the position advanced in this book. It explicitly disavows

"My 4-year-old son, who is enamored with “Teenage Mutant Ninja Turtles,” has a different
view about the plausibility of mutating offensive weaponry.
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any claims about the mechanisms in the human head that achieve this
optimization—they certainly do not have to involve logical calculation.
(Only the theorists’ predictions about human behavior require logical
calculations.) It would have, perhaps, been less contentious and also
perhaps clearer if I had chosen to call my principle the “principle of
adaptation.” However, I chose the terminology by analogy to economics
before I appreciated its unfortunate consequences. Now I am stuck with it.
At least I have tried to choose the right title for the book.

The principle should be taken as a scientific hypothesis to be judged by
how well it does in organizing the data. One should not be surprised to find
it doing well at explaining some aspects of cognition and not others.
Obviously, I would not be writing this book if 1 did not believe I had
achieved some success. My own sense is that cognition is likely to be one of
the aspects of the human species that is most completely optimized and
optimized in a clean, simple way so that it will yield to scientific analysis.
This is because cognition seems one of the more malleable of human traits
and, hence, more easily optimized and not as much subject to the
constraints of evolutionary history. However, this is merely bias. The proof
or disproof of the conjecture should not come from a priori considerations,
but from how well the principle of rationality does in leading to successful
theory.

Applying the Principle of Rationality

How does one use the principle of rationality to develop a theory of
cognition? Developing a theory in a rationality framework involves the
following six steps:

1. Precisely specify what are the goals of the cognitive system.

2. Develop a formal model of the environment to which the system is
adapted (almost certainly less structured than the standard experi-
mental situation).

3. Make the minimal assumptions about computational limitations.
This is where one specifies the constraints of evolutionary history.
To the extent that these assumptions are minimal, the analysis is
powerful,

4. Derive the optimal behavioral function given items 1 through 3.

5. Examine the empirical literature to see if the predictions of the
behavioral function are confirmed.

6. If the predictions are off, iterate. In my own experience, my
problems have been with the mathematical analyses required in step
4, which can often be quite complex.

The theory in a rational approach resides in the assumptions in items 1
through 3, from which the predictions flow. I refer to these assumptions as
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the framing of the information-processing problem. Note that this is a
nearly mechanism-free casting of a psychological theory. Ideally, most of
the interesting assumptions in this theory come in step 2, because the
structure of the environment is what is easiest to verify. One can, in
principle, look and see if these assumptions are objectively true of the
world. To the extent that assumptions in step 3 play a significant role, this
ideal is only approximated. The reader will find in subsequent chapters that
the computational assumptions are indeed weak, involving claims that
almost all information-processing theories would agree on (such as a
short-term memory limitation of some sort or that it takes time to process
an alternative.)

It is worth commenting on the fact that this process of theory building is
iterative. If one framing does not work, we have to be prepared to try
another. Such iterative behavior has often been seen as a sign that an
adaptionist enterprise is fatally flawed (Gould & Lewontin, 1979). How-
ever, as Mayr (1983) noted in response to Gould & Lewontin, iterative
theory construction is the way of all science. Certainly, in cognitive science,
we have seen a long iteration of mechanisms to explain cognition. Hope-
fully, we understand in cognitive science that a theory is to be evaluated by
how well it does in organizing the data and not by whether it is the nth
theory that has been tried. Having acknowledged this, I must note that my
own experience with theory construction in the rationalist framework is less
iterative than my experience with theory construction in the mechanistic
framework. This is what we would hope for—that rational considerations
would provide more guidance in theory construction.

Advantages of Ratlonal Theory

In summary, let me list the advantages of the rational approach in order of
increasing importance:

1. It offers a way to avoid the indentifiability problems of the mecha-
nistic approach. One has a theory that depends on the structure of an
observable environment and not on the unobservable structure in the head.

2. It offers an explanation for why the mechanisms compute the way
they do. We do not have to view the human mind as a random set of
postulates let loose on the world.

3. It offers real guidance to theory construction. If the mind is not a
random set of mechanisms, but is structured to optimize its adaptation, one
can use the hypothesis of optimization to guide the search for a scientific
theory. Otherwise, one has to rely on very weak methods to search a very
large space of psychological hypotheses.
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As Marr stressed, a special case of the third point is the role that a
rational analysis can have in guiding the design of mechanistic theories at
the algorithm and implementation levels. I hope to be able to follow up the
analysis in this book with a new theory within the ACT framework to
update the ACT* theory (see Anderson, 1983, for a discussion of the
distinctions between frameworks and theories). Such a new theory will take
advantage of the guidance of a rational theory.

Although a rational explanation is more satisfying than a mechanistic
explanation in terms of point number 2 in the preceding list, there is another
sense in which mechanistic explanations are more satisfying: For whatever
reason, we enjoy having an image of what might be happening in the head.
Thus, even if a rational theory could predict all the relevant data, we would
want to pursue a mechanistic theory. Rational and mechanistic approaches
need not be in conflict. We can take Marr’s view that the rational analysis
provides the needed guidance for the mechanistic approach. We can emerge
from our scientific endeavor with both an answer to what is happening
(modulo identifiability limitations) and why it is happening (modulo the
relativism of adaptation because of evolutionary history and biological
constraint).

IS HUMAN COGNITION RATIONAL?

As indicated earlier, it is common wisdom in psychology that humans are
irrational, and this seems to go to the heart of the proposal in this book.
Many a person has, in effect, said to me, “Your analyses are interesting, but
they must be wrong, because human thought has been shown not to be
rational.” Most of these demonstrations of human irrationality come from
the fields of decision making and social judgment and are not from the
more basic cognitive domains that are the focus of this book. The basic
resolution of this apparent contradiction between the resuits of these other
fields and the current book is that rationality is being used in two senses and
that rationality in the adaptive sense, which is used here, is not rationality
in the normative sense that is used in studies of decision making and social
judgment. For an extensive discussion of these two views of human
rationality and their relationship to evolution, see Stich (in press).

It is possible that humans are rational in the adaptive sense in the
domains of cognition studied here but not in decision making and social
judgment. However, in this section, I argue that many of the purported
demonstrations of human irrationality are demonstrations in the normative
sense and not the adaptive sense. I enumerate in the following subsections
some of the ways in which criteria of normative rationality can deviate from
criteria of adaptive rationality.




32 1. INTRODUCTION
Computational Cost

One problem with normative definitions of rationality is that they ignore
computational cost. This is nicely illustrated in the application of Newell’s
principle of rationality to chess. There, the observation was that knowledge
of the rules of chess plus Newell’s principle of rationality implied playing a
perfect game of chess. As Newell noted, this ignores the astronomical cost
of searching the entire game-tree of moves. In an adaptive analysis, one has
to place the cost of performing the computation into the equation to be
optimized (step 3 in our prescription for developing a theory on a rational
framework). This makes the principle of rationality developed here more
like Simon’s (1972) theory of bounded rationality, although Simon has
insisted that there is a difference (see Simon, in press, and the discussion in
Chapter 6).

This observation is one of the potential Achilles’ heels of a rational
approach. If we have to know computational cost to know what is rational,
we may have to specify the mechanisms of cognition in advance of rational
analysis. This is just what we are trying to avoid. However, I hope to be able
to illustrate that we can progress with very weak assumptions about
computational cost. This is certainly the case in the analysis of the chess
dilemma.

Is There an Adaptive Cost?

A question that is rarely asked is whether there is really a cost associated
with the purported irrationality. If a person prefers A to B, Bto C, and C
to A, but there are no differences among A, B, and C in their adaptive
value, then the intransitivity does not violate the adaptive principle of
rationality. It is important to stress that adaptation in the genetic sense is
measured in number of surviving offspring (which is what controls evolu-
tionary selection) and not money, power, or happiness. Thus, the gambler’s
fallacy may lead someone to lose money in Las Vegas, but if it leads him or
her to try for a third child after two boys (because a girl is due), then it is
quite adaptive.

Nisbett and Ross (1980), after documenting the abundance of experi-
mental evidence for a number of intellectual fallacies, noted that some of
them may have little cost. A good example is the primacy effect, where
people give too much weight to initial evidence and discount later evidence.
Suppose, for example, that primitive man is trying to decide which of two
fishing spots yields a better chance of catching a fish. Suppose he samples
one and succeeds. The primacy effect means that he is going to tend to
discount later evidence about the efficiency of the two fishing holes and
continue with the first. Conversely, if his first experience is bad, he will tend
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to avoid that fishing hole, irrespective of later experiences. Such behavior is
not rational in a normative sense.

The interesting question is “How irrational is it in an adaptive sense?”.
On careful analysis, Nisbett and Ross concluded that it is not very costly at
all. If the fishing holes yield a very similar probability of a fish, then it
would not matter which hole was chosen. If one hole had a near-one
probability of yielding a fish and the other had a near-zero probability,
primitive man would choose the right one, despite the primacy effect,
because it is very unlikely that his first experience would be misleading, and
even if it was it would be quickly overwhelmed by subsequent experience.
(The primacy effect is not so strong that we totally ignore all subsequent
experience).®

Heuristics Need to Be Evaluated
in Terms of Expected Value

People act according to principles that cannot be guaranteed to be correct
and can fail in specific cases. Such principles are called heuristics, and there
is no reason why normatively irrational heuristics cannot be adaptive. For
instance, many people are likely not to believe an argument if they perceive
that the arguer does not believe it. According to normative models, the
validity of an argument is a function of the argument and not the beliefs of
the arguer. However, it is an open question whether, given the fallibility of
validity judgment, people are more likely to come to erroneous beliefs
behaving in accord with this heuristic.

3To explore this more systematically, one must make some assumptions about the
distribution of successful fishing holes. Suppose that there is a uniform distribution from zero
to one of successful fishing holes in terms of probability of catching a fish on a given day. That
is to say, the chances that a new fishing hole will yield a probability p of catch each day is the
same for all p. This means that if our primitive man chose randomly which hole to fish at, his
expected probability of catching a fish any day would be .50. On the other hand, if he were
omniscient and knew which of the two holes was best, he could expect to catch a fish 2/3 of
the time. Said another way, the omniscient primitive man would catch 1/3 more fish than the
random primitive man, giving him a considerable survival advantage. Of course, primitive man
could not be omniscient. But let us suppose he was rational, took a modest sample, and went
with the evidence of that sample. Suppose he tried the first hole three times and the second hole
twice, and went with whichever hole yielded the most fish, choosing the second hole if there
was a tie. This would yield him an expected .625 chance of a fish per day, or 94% of the
omniscient maximum. However, primitive man is not rational. Suppose he showed such a
strong primacy effect that he would choose the second hole after a successful first catch only
if he failed on his other two samples of the first hole and succeeded with his two samples of
the second. Similarly, he would only choose the first hole afier a failure to get a first catch if
his next two trics at the first hole were successful and his two tries at the second hole both
failed. 1t turns out that his expected catch per day would be .603, or 96% of the rational man’s
catch. Presumably, this does not convey much of a survival disadvantage.
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A case that Nisbett and Ross discussed in detail is the fallacy in human
judgment that causes should resemble their effects. J.S. Mill (1843/ 1974)
wrote, “The most deeply-rooted fallacy . .. is that the conditions of a
phenomenon must, or at least probably will, resemble the phenomenon
itself” (p. 765). Nisbett and Ross (1980) documented some of the misprac-
tices of medicine that derive from this. For instance, in medieval times the
lungs of foxes were prescribed as a cure for asthma, because the animal was
regarded as remarkable for its strong power of respiration. People ridiculed
the hypothesis that yellow fever might be caused by mosquitoes. Much
human suffering has been created or prolonged by the insistence that causes
must resemble their effects.

However, use of similarity is, on the whole, rational —as is expanded on
in chapter 4. We can reject many spurious correlations as noncausal because
of total lack of similarity between purported cause and effect. We do not
want to believe that roosters’ crowing causes the sun to rise, that lying in bed
causes one to vomit, or that being homosexual causes one to have AIDS. As
Nisbett and Ross conceded, the similarity heuristic has probably guided
medical discovery such as vaccination, the use of cold compacts to treat
burns, and the relationship of smoking to lung cancer. The use of similarity
Is a heuristic, and any heuristic can sometimes lead one far astray. The only
claim is that one will do better on average if one follows it than if one
ignores it.

Applications of Normative Models Often Treat
Uncertain Information as Certain

If I were to take issue with the validity of any demonstrations of human
irrationality in the normative sense, it would be with certain applications of
normative models in defining rational behavior. Normative prescriptions
take the form of “If situation X holds, then action Y is prescribed.” Many
applications overestimate the certainty of knowing whether situation X
holds. For instance, consider a recent set of medical decisions I had to
make. I was told by an internist, and then by a surgeon, that I had an
indirect hernia (it had no symptoms that I could detect), that there was a 5%
chance it would become strangulated, and that strangulated hernias are
fatal 30% of the time and result in serious complications 50% or more of
the time. I was told that a hernia operation was nearly totally free of danger
and complication. These facts were basically confirmed as common medical
knowledge by a number of nonsurgeon physician friends who had no
interest in the surgeon’s fees and presumably some interest in my welfare.
Simpie mathematics showed that surgery reduced my chance of premature
death by 1.5% (actually a bit more complicated) and a serious medical
complication by 2.5% at little cost. These are small probabilities, but if we
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keep encountering such risks we are playing Russian roulette, according to
decision theorists (Dawes, 1987), and assuring our early demise. I have to
admit, I was ill at ease with this analysis, but I forced myself to behave
rationally. Later, I learned that what was diagnosed as a hernia was not a
hernia but rather what hernia experts call a “weakness™ that if it ever
developed into a hernia it would have become a direct hernia; that
strangulation is rare in the case of direct hernias; that there is a high
probability (5-15%) that hernias will reoccur after an operation; that the
probability is even higher for someone operated on for a weakness; and that
there are substantially higher probabilities of strangulation with reoccurring
hernias. I only found this out upon further research when my hernia
operation did fail and I had a real symptomatic hernia. Thus, what had
happened was I had read too many articles on rational decision making,
treated the premises provided to me by physicians as certain, and proceeded
to act in the rational manner.

The case in the literature that best illustrates this overemphasis on the
certainty of the premises is the famous Kahneman and Tversky (1973)
demonstrations concerning humans’ failure to take into account base rates.
For instance, they ask subjects to read descriptions of individuals and judge
whether these individuals are engineers or lawyers. They also tell subjects
information about the base rates of engineers and lawyers in the population
(for instance, 70% of the population are lawyers). Subjects completely
ignore this base rate information and make their judgment on how well the
description matches a prototypical engineer or lawyer. However, the
prescriptively normative Bayes Theorem says base rates should have strong
effects.

Let us assume that subjects understood what they were told and took as
their task the official task, Why should they believe the abstract informa-
tion about base rates? As my medical experience testifies, information
about base rates is typically unreliable. The instances of inaccurate base rate
information abound. There were the famous polls that guaranteed Dewey’s
election. As another instance, a few years ago we were told that 1 in 100
people who tested positive for the AIDS virus would develop full-blown
AIDS. Now, that estimate is up by more than a factor of 10. As a more
humorous example, our local Pittsburgh magazine does a poll of local
residents to get information about restaurants. Every year at least a
plurality of people claim that Pizza Hut makes the best pizza. Should I
really ignore personal experience and testimony of others to the contrary
and accept this abstract base rate information gathered by a “reliable”
source?

Believers in the need to use base rates are a die-hard crew, and whatever
example I bring up they always say, “But, of course, you should have
known that the information in that case was invalid. What you should pay
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attention to is valid information about base rates.” Ignoring the problem-
atical issue of whether there was any valid abstract information about base
rates in our evolutionary history (from the village priests?), let me ask where
is such valid information today, and how do we know it is valid?

I have asked bright colleagues where they think good information about
base rates might be found. The most common answer is information like in
Consumer Reports on things like repair statistics. Then I asked them how
they know this is valid information in contrast to the AIDS information or
the Dewey poll. It may well be that Consumer Reports does provide valid
information, but none of my colleagues are in possession of reasons for
believing so beyond an interesting “Well, if their information was bad, we
would have heard about it,” or “It proved reliable for me when I bought
such-and-such a car.”

Another comment I receive from colleagues who are less die-hard
believers in abstract base rates goes something like this: “Well, all right,
such base rate information is often invalid, but surely you cannot be
arguing that one would be better off, on the average, to ignore such
information.” I am not arguing this, but, on the other hand, I can see no
basis to argue that one would be better off to pay attention to abstract
information about base rates. It is very much an open question that requires
further analysis of how often base rate information is misleading and the
costs and benefits of using frequently flawed information.

The only time it is clear that we should heed base rate information is for
domains where we have personal proof that the information is valid. Thus,
if one has personal experience that the reports from Consumer Reports have
proven valid, then one should be influenced by them. On the other hand,
when some high authority (medical, religious, political, or academic) has a
pronouncement to make about something for which we have no personal
experience or contradictory personal experience, we should be very suspi-
cious. I wish I had been.

As a final observation, there is evidence that when our experience with
base rates is concrete and not abstract (seeing is believing), and our behavior
involves responding to the object in question, not engaging in a verbal
exercise, people are extremely sensitive to base rates. A good example of
this is the accuracy with which people probability match (see Kintsch,
1970b, for a review) when they are trying to predict an event in a random
sequence. Interestingly, this probability matching has often been described
as nourational. If the probability is higher of a 1 in a random sequence of
0’s and 1’s, the subject should always predict 1 to maximize correct
prediction. Upon close inspection, it turned out that subjects were not
accepting the authoritative reports of experiments that these were random
sequences, and they were searching out sequential patterns. Subsequent
chapters in this book describe other instances in which people are very
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sensitive to concrete base rates, although, again, we often mischaracterize
such sensitivity as irrational.

The Situation Assumed Is not the
Environment of Adaptation

Adaptation is defined with respect to a specific environment. Often, the
normative model assumes a different situation. Thus, human memory is
often criticized because it cannot easily perform simple tasks, like storing a
list of 20 words. However, human memory did not evolve to manage a list
of 20 words but rather to manage a data base of millions of facts and
experiences. In chapter 2, when we view memory in light of this situation, its
behavior in a memory experiment appears quite adaptive.

Another example concerns the constant demonstration of human falla-
cies in experiments on deductive reasoning (Anderson, 1985, chapter 10).
Deductive reasoning enables one to go from certain premises to certain
conclusions. However, as discussed earlier, certain premises are rare or
nonexistent in situations of adaptive importance. As a consequence, there is
no reason why humans should have evolved to engage in correct deductive
reasoning? Cosmides (1989) argues that we can understand the pattern of
success and failure in reasoning about the Wason card-sorting task ac-
cording to what situations are adaptively important.

An extension of this line of argument can be used to explain the apparent
irrationality of modern life. Although it is important to avoid exaggerated
doom-saying, we probably all agree that current human behavior is harming
the prospects for human survival by creating huge nuclear arsenals and
environmental disasters. A possible explanation is that human tendencies,
adaptive in other earlier environments, are playing themselves out disas-
trously in the current modern technological age. One must be cautious of
such rational explanations that make reference to past environments, rather
than the current, because it is always possible to invent environments in
which any behavior would be adaptive. This is not to say that one cannot
make explanations by appealing to the past; however, they require inde-
pendent evidence about what the past environments were really like.

Conclusions

Research comparing human behavior to normative models has been ex-
tremely useful; however, one must be careful in understanding its implica-
tions for adaptive rationality. It may well be that certain aspects of human
cognition cannot be understood profitably in the framework I am advocat-
ing. However, I think we have grossly overestimated the irrationality of
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human cognition in this sense. Moreover, as I have begun to discover, there
are aspects of human cognition that can be very profitably understood
within the rationality thesis.

THE REST OF THIS BOOK

The next four chapters of this book are devoted to extensive analyses of a
number of aspects of human cognition from the perspective of this rational
framework. The fruitfulness of these analyses is the real evidence for the
principle of rationality. Throughout the book, I briefly speculate on what
the implications of these analyses might be for the ACT architecture, which
is concerned with the algorithm and implementation levels. However, I have
left working out these implications for another day. The fact that rational
analyses can stand on their own is evidence that this is a level of theoretical
analysis that can be pursued independently. I have not worked out the
detailed architectural implementation, because it would be premature until
I have fully worked out these rational derivations.

The book ends with a short chapter of general discussion. I wrote the
chapter with some reluctance in response to those who felt the need to have
general questions addressed after four chapters of detail. It should not be
read without first reading the four contentful chapters.

APPENDIX:
NON-IDENTIFIABILITY AND RESPONSE TIME

In the main body of this chapter, the claim was made that behavioral data
will not allow us to determine the underlying mechanisms at the implemen-
tation level. The reason for this is that there are many different sets of
mechanisms that can mimic one another. This is a well-established fact in
formal automata theory. However, in the conventional understanding of
formal automata theory, the fact that two systems display the same
input-output behavior does not guarantee that they will show the same
timing behavior. That is, although the two systems may produce the same
output, they may take different times to compute it. Indeed, a lot of work
in automata theory is concerned with studying machines that compute the
same behavior but with different temporal functions.

Suppose we had two implementation theories that agreed in the input-
output behavior of the system. Both would claim that the mind went
through some set of mental steps (largely unseen) to perform some task.
They would be different because they claimed that the mind went through
different sets of steps to achieve the same end state. The claim that might be
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advanced is that, even though the end states were the same, the time would
be different because the two systems performed different internal steps.

Suppose system 1 takes n, steps to perform a task and system 2 takes n,
steps, 1, < n,. It might seem simple to get timing mimicry despite the
different number of steps. Let us just have system 2 take a fraction /ny of
the time to make its steps. This is the basic speed-up argument.

However, there is a well-known objection to such a speed-up proposal in
automata theory. This objection involves the concept of computational
complexity. System 1 and system 2 may take differing number of steps to
perform their tasks, depending on the complexity of the problem. A simple
example is that time to parse a sentence should vary with its length. Now if
system 1 displays some function f, of complexity, and system 2 displays
another function f, of complexity, it may not be the case for any constant
speed-up factor a, afy(n) = f,(n) for all n where n measures complexity
(e.g., length of sentence). For instance, let /> be a squaring function and fi
a linear function. For no @ > 0is it the case that an? < n for all n. Basically,
if n gets large enough, the system with the worse complexity function will
start to lag behind the system with the better complexity function.

However, the whole problem with such arguments is that they depend on
unbounded complexity, and people never deal with problems of unbounded
complexity. As long as there is a bound on complexity, the argument
vanishes. There are real and very sharp limitations on the complexity of
human behavior. For instance, we can parse longish sentences only if they
are basically linear concatenations of small phrases that we can parse
separately. As another example, we can process in detail only a small part
of a visual array at a time (that around the fovea). Again, we process a large
array by a sequence of glances.

This complexity-bound argument is particularly forceful when one
realizes that working-memory limitations and chunk-size Limitations place
very severe limitations on the number of elements that can be processed
and, hence, on complexity functions. Any psychologically accurate model is
going to have to involve linear concatenations of the processing of these
limited-size chunks. With such severe limitations on complexity, mimicry of
processing times would be particularly easy to achieve.

This observation has been discussed in Anderson (1979) and in Berwick &
Weinberg (1984). Thus, the point of this argument is to say that, although
the formal results are real problems for simulation of formal machines
solving formal problems, they are not real problems for simulation of
humans solving human problems.

I have been asked what happens to such speed-up arguments if one has
physiological evidence that the operations of the brain can be performed
only so fast. In principle, such considerations can serve to eliminate
certain speed-up proposals. However, in practice, there are plenty of
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theories that do not push the brain beyond its limit. Typically, neurophy-
siological timing arguments, when they are invoked, are quite questionable.
For example, J. A. Anderson (1973) has argued that the brain cannot do
serial searches with 35 msec. comparison times per item, as was proposed by
Sternberg (1969). Although I am inclined to believe that memory sets in the
Sternberg task are not processed serially, there are no strong reasons for
proclaiming 35 msec serial processing impossible. Perhaps certain schemes
for processing an item could not be implemented in 35 msec, but Sternberg
never (to my knowledge) made a commitment to a particular neural
implementation.

Memory
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PRELIMINARIES

I begin my detailed application of rational analysis with human memory for
a number of reasons. Human memory is the field of cognitive psychology
with which I have had the longest association, going back over 20 years. It
is also the area of cognition where I got my first glimmers of how a rational
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