
9.19 Homework 4
due 30 October 2023

18 October 2023

There’s no Colab notebook for this pset: just one Tregex tree-search problem, and three
problems that you should be able to do with pencil, paper, and in some parts a calculator.
Please submit all answers in a single PDF file. Make sure you start all parts of the assignment
well before the due date.

Points for each problem: Problems 1 and 2 are worth 35 points each; Problem 3 is
worth 20 points (10 for each of the two parts); Problem 4 is worth 10 points.

1 Tregex tree searches

For this problem, when we refer to the Penn Treebank (Marcus et al., 1994) you can use the
data file wsj-all.mrg which appears under Files — Datasets on Canvas. Also, you can
consult the Penn Treebank Bracketing Guidelines in the same location to answer questions
about how the dataset is organized. The Tregex software for conducting tree searches
can be downloaded at https://nlp.stanford.edu/software/tregex.shtml. For all parts of the
below problem, make sure to show your work, including what Tregex patterns you used
for searches and the math you use for estimating probabilities.

Note: the Tregex GUI requires a lot of memory to do searches on big datasets, but
the default command invocation gives it “only” 300MB. You can give it more memory by
editing run-tregex-gui.bat (Windows) or run-tregex-gui.command (Mac) and replacing
-mx300m with a larger value like -mx2g (giving it 2 gigabytes). Command-line invocation
of Tregex generally does not require such a large memory footprint because it streams the
output rather than saving the results of searches.

We’ll motivate this problem with some examples of possible garden pathing, building off
cases discussed in Gibson (1991):

(1) a. Mary’s friend gave her books. . .
b. Mary’s friend gave her books to the library.

(2) a. Mary’s friend sold her books. . .
b. Mary’s friend sold her books to the used book store.
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In the above examples, you may find that you were more surprised by Example (1) the
continuation (1-b) after seeing the preamble (1-a), than you were by Example (2)’s
continuation, (2-b), after seeing the preamble (2-a). This homework assignment investigates
why you might have had that experience.

To start the investigation, we need to teach you a bit about the syntax of verb phrases
in English. In the ditransitive construction, there are two different syntactic frames, as
illustrated by (nearly) meaning-equivalent alternants like:

Double-Object Construction Prepositional-Dative Construction
Pat gave Kim the book. vs. Pat gave the book to Kim.

The Prepositional-Dative is so called because the “goal” argument of the verb (the entity
that gets given something) is expressed as a prepositional phrase. The Double-Object
construction is so called because both the goal and the theme (the entity that is being given)
are expressed as object NPs, without being marked using a preposition.

1. What is the difference in Penn Treebank syntactic structure between the double-object
and prepositional-dative construction in terms of the VP rewrite rule used for each
construction? You can answer this by, for example, using the Tregex GUI to browse
trees containing give or other such verbs.

2. There are many different verbs besides give that allow both the double-object and
prepositional-dative variants, including sell, award, and tell. First, use your intuition
to guess the order of preference strength for each of these verbs, ranging from most
double-object-preferring to most prepositional-dative-preferring. Report these intu-
itions. Now, use Tregex to compute relative-frequency estimates of

P (double-object|verb with ditransitive meaning)

for various verbs—minimally each of give, sell, award, tell, and optionally for any other
verbs you want to check—assuming that

P (double-object|verb with ditransitive meaning)

+P (prepositional-dative|verb with ditransitive meaning)

=1

—that is, that double-object and prepositional-dative are the only two ways of
realizing a ditransitive meaning. How do the relative frequency estimates line up with
your intuitions? Comment on what you’ve discovered. Hint: Tregex patterns are
left-associative: for example, @VP < @NP < @NNS means a VP that has both an NP
daughter and an NNS daughter, not a VP that has an NP that has an NNS daugh-
ter. You can use parentheses to disambiguate. For example, @VP < @NP < @NNS and
(@VP < @NP) < @NNS mean the same thing, but @VP < (@NP < @NNS) means some-
thing different (it means a VP that has an NP that has an NNS daughter).
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3. Now put together what you’ve learned about the ditransitive construction with what
you’ve learned about garden-pathing and surprisal to hypothesize why a comprehender
might be more surprised by the continuation (1-b) given the preamble (1-a) than by
the continuation (2-b) given the preamble (2-a).

2 Surprisal in a simple PCFG of Japanese

Japanese is a strictly verb-final language with null pronouns and considerable word-order
freedom. It uses case marking to distinguish subjects (which receive nominative case) from
objects (which receive accusative case). Let’s consider the following “toy” fragment proba-
bilistic context-free grammar (PCFG) of Japanese. In this fragment, case annotations such
as NP[nom] simply distinguish among atomic categories – so NP[nom] and NP[acc] are simply
two different categories in the grammar.

0.4 S → NP[nom] NP[acc] V 1.0 NP[nom] → NP ga
0.3 S → NP[nom] V 1.0 NP[acc] → NP o
0.1 S → NP[acc] NP[nom] V 0.5 NP → Tanaka-san (‘Mr. Tanaka’)
0.2 S → NP[acc] V 0.5 NP → Ota-san (‘Mr. Ota’)

0.5 V → deta (‘went out’)
0.5 V → yonda (‘called’)

1. Given the input prefix Tanaka-san ga, what is the probability that the next element
that the comprehender encounters in the input will be the clause-final verb?

2. Compute the probability that the next element will be the clause-final verb for the
input prefixes Tanaka-san ga Ota-san o, Ota-san o, and Ota-san o Tanaka-san ga as
well.

3. Let us call the first NP in a sentence NP1 and the second NP in the sentence, if
one appears, NP2. In each of the nominative-initial and accusative-initial examples,
how many bits of surprisal that would be associated with encountering the clause-
final verb immediately after encountering NP1 are reduced by encountering NP2 first?
Remember that surprisal is negative log probability, or log inverse-probability:

Surprisal of x in context C = − log2 P (x|C)

= log2

1

P (x|C)

so the bits of surprisal reduced by NP2 would be

log2

1

P (x|NP1)
− log2

1

P (x|NP1 NP2)

4. Could you imagine a reasonable PCFG (for any language) in which adding a pre-verbal
constituent would ever increase the amount of surprisal associated with the final verb?
Justify your answer.
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3 Conditional Independence in Bayes Nets

For each Bayes Net below, we give you several pairs of sets of nodes in the Bayes Net. In
each case, state the conditions (what sets of nodes must and/or must not be known) under
which the specified node sets will be conditionally independent from one another. If the
node sets are always independent or can never be independent, say so.

1. A variant of the disfluency model we saw earlier:

M intended meaning to be conveyed
W is the word intended to be spoken a hard word?
A was the speaker’s attention distracted?
D was a disfluency uttered?

M

W A

D

(a) {W} and {A}
(b) {M} and {D}
(c) {M} and {A}
(d) {D} and {A}

2. The relationship between a child’s linguistic environment, his/her true linguistic abil-
ities/proficiency, and measures of his/her proficiency in separate spoken and written
tests

E a child’s linguistic environment
P the child’s linguistic proficiency (number of words known, etc.)
S the child’s performance on a spoken language proficiency test
W the child’s performance on a written language proficiency test
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E

P

S W

(a) {S} and {W}
(b) {E} and {P}
(c) {E} and {S}
(d) {E,P} and {S}
(e) {E,P} and {S,W}

4 Conditional Independence in the Bayesian percep-

tual magnet model

In the perceptual magnet example from the Bayes Net class, did any conditional indepen-
dence hold among the three random variables of the model—category c, target production
T , and perceived speech signal S? (Hint: you may want to review the characterization of
the Bayesian perceptual magnet model as a noisy-channel model on the perceptual magnet
slides we covered in class, and/or review the mathematical presentation of the model on page
758 of Feldman et al. (2009).)
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