
9.19: Computational Psycholinguistics, Pset 3
due 18 October 2023

5 October 2023

The Colab notebook for this problem can be found at https://colab.research.google.com/
drive/11bbLYa3Nu1wkZ6PKu-59R2j2oyAVjoMX

1 Using regular expressions to syllabify English words

Write a Python function that uses regular expressions to syllabify English words. You’re not
expected to come up with something that performs perfectly, as that is not an easy problem,
but you should come up with something that performs well on a wide range of English
words, and doesn’t have systematic gaps. Python’s re module provides regular expression
functionality that you will most likely find useful. As a starting point you may want to look
at its search() and sub() functions.

This problem will also give you a brief introduction to the International Phonetic Alpha-
bet (IPA). For convenience, the eng_to_ipa Python package does IPA lookup for a large set
of English words, using the Carnegie Mellon University Pronouncing Dictionary. You don’t
need to have a comprehensive knowledge of IPA to do this problem, but these things will
help:

A. Every syllable has at most one vowel:

• Some vowels are monophthongs—involving a simple, or “pure”, sound—A (as
in palm), æ (as in hand), @ (as in hut), I (as in hit), i (as in high), O (as in thought),
U (as in look), and u (as in hoot).

• Other vowels are diphthongs—involving a transition between two simple vowel
sounds—including aI (as in hide), aU (as in mouth), eI (as in face), oU (as in row),
and OI (as in choice).

B. A syllable can also have zero or more consonants before the vowel, and zero or more
consonants after the vowel.

C. One syllable per word receives primary stress. This syllable is conventionally marked
with a " mark before it, unless the word is monosyllabic in which case no stress mark is
needed. For example, open is written as "oU p@n, and anaconda is written as æ n@ "kAn
d@. In this exercise, however, you don’t need to worry about placing stress.

9.19, Instructor: Roger Levy, Fall 2023 1

https://colab.research.google.com/drive/11bbLYa3Nu1wkZ6PKu-59R2j2oyAVjoMX
https://colab.research.google.com/drive/11bbLYa3Nu1wkZ6PKu-59R2j2oyAVjoMX
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html#re.search
https://docs.python.org/3/library/re.html#re.sub

D. There are some distinctions made that we won’t worry about here. This includes
writing the “schwa” (@) as a “wedge” (2) when it is stressed. Also, some consonants
including r, l, m, n and N can behave as syllabic, meaning they play the role of
vowels. We will instead write them in these cases as being preceded by a schwa—e.g.,
letter is lEt@r.

Here are some examples of syllabifications of English words:

Word IPA representation Syllabification

i aI aI
air Er Er
big bIg bIg
strength strENT strENT
steal stil stil
ideal aIdil aI dil
quiet kwaI@t kwaI @t
enter Ent@r En t@r
able eIb@l eI b@l
pandas pænd@z pæn d@z
intake InteIk In teIk
capable keIp@b@l keI p@ b@l
serendipity sErEndIpIti sE rEn dI pI ti

Your function should also work for “nonce” English orthographic words—letter sequences
that don’t happen to be words, but that could be. For example:

Word IPA representation Syllabification

sneed snid snid
snoded snoUdEd snoU dEd
ilskig IlskIg Il skIg

In the Colab notebook for this pset, provide your implementation in the section for this
problem. Try your implementation on new English words of your choosing, and describe
what kinds of words you find hard to handle.

After this pset is over, we will try out everyone’s syllabifiers on a set of challenge words,
and report whose does the best! (This is just for fun; performance on this challenge set will
not affect your grade.)

2 Regular expressions and finite-state automata

We’ll use the automata-lib and visual-automata libraries for this problem—see the Colab
notebook.

Task: write a finite-state automaton that accepts and rejects the same strings as the
following regular expression, and list the words that it accepts:

9.19, Instructor: Roger Levy, Fall 2023 2

https://github.com/caleb531/automata/blob/main/docs/README.md
https://github.com/lewiuberg/visual-automata

((in)(disputabl|conceivabl)|(un)(believabl|trustabl))(e|y)

Task: Write a regular expression that accepts and rejects the same strings as the fol-
lowing finite-state automata, and list some sentences of English exemplifying what the au-
tomata/regex accepts. (Make sure that each edge in the automaton is traversed by at least
one of your example sentences.)

start
Det

PreDet

Det

ε Adj

Adv

Noun

Part of speech Example words
PreDeterminer all, only
Determiner the, a
Adverb very, especially
Adjective big, green
Noun woman, table

3 A finite-state grammar for a fragment of English syn-

tax

We’ll use the automata-lib and visual-automata libraries for this problem—see the Colab
notebook.

In English, it is possible to add adverbs and prepositional phrases to the beginning of a
sentence:

Kim saw a movie.
Recently Kim saw a movie.
Recently at the theater Kim saw a movie.
Recently at the theater with her friend Kim saw a movie.
...

It is also possible to recursively embed a sentence inside a complement clause using
a verb like say, think, claim, and so forth:

Kim saw a movie.
Pat said that Kim saw a movie.
Terry claimed that Pat said that Kim saw a movie.
...

Adding adverbs and prepositional phrases can be mixed together with embedding inside
a complement clause:

9.19, Instructor: Roger Levy, Fall 2023 3

https://github.com/caleb531/automata/blob/main/docs/README.md
https://github.com/lewiuberg/visual-automata

Kim saw a movie.
Pat said that at the theater Kim saw a movie.
Terry claimed that recently Pat said that at the theater Kim saw a movie.
...

Task: write a finite-state automaton that accepts sentences of English involving simple
transitive and intransitive sentences, recursive complement clauses, and adverbs and preposi-
tional phrases at the beginning of clauses. Use Σ = {Name,Noun,Det,Verb,Prep,Adv, that}
as your input alphabet.

Hint: the automaton below accepts simple transitive and intransitive sentences, and you
can get to a solution by adding states and edges to it.

start
Det Noun

Name

Verb Det Noun

Name

4 Writing context-free grammars

This is an exercise in writing context-free grammars (CFGs) to capture generalizations about
natural language syntax. You can use an automatic parser available in NLTK to check whether
your grammar accounts for the key generalizations. To get you going, consider the following
grammar that we covered in the CFG lecture notes:

NP →Det N
NP →NP PP
PP →P NP
Det→ a
Det→ an
N → joke

N→woman
N→ umbrella
N→ street
P→ about
P→with
P→ on

Running the following code will parse the string a joke about the woman with an umbrella
on the street with start symbol (i.e., goal category) NP, generating the five parses that we
saw in the CFG lecture notes. Note that NLTK’s CFG.fromstring() function takes the left-
hand-side of the first rule listed as the goal category, and allows multiple rewrites for a single
category to be expressed with a disjunction on the right-hand side of a single rule, so that
the rule X -> Y1 ... Ym | Z1 ... Zn is shorthand for the two rules X → Y1 . . . Ym and
X → Z1 . . . Zn.

import nltk

from nltk import Nonterminal, nonterminals, Production, CFG

grammar = CFG.fromstring("""

9.19, Instructor: Roger Levy, Fall 2023 4

NP -> Det N | NP PP

PP -> P NP

Det -> 'the' | 'a' | 'an'
N -> 'joke' |'woman' | 'umbrella' | 'street'
P -> 'about' | 'with' | 'on'
""")

parser = nltk.parse.BottomUpChartParser(grammar)

sentence = ['a', 'joke', 'about', 'the', 'woman',
'with', 'the', 'umbrella', 'on', 'the', 'street']

for tree in parser.parse(sentence):

tree.pretty_print()

A. Write a context-free grammar that will capture the structural ambiguity in the sen-
tence They are flying planes. Your grammar should respect the facts that (i) an NP
should be substitutable with a pronoun given the right context; and (ii) a verb and an
immediately following NP can combine to form a VP. You can check your work with
the NLTK parser to make sure that your grammar behaves the way you think it will
behave.

B. Extend your grammar to capture the structural ambiguity in the sentence Flying planes
can be dangerous. (Hint: a non-finite VP can serve as the subject of an English
sentence, such as in the sentences To err is human or Defeated by the Miami Heat is
not how I expected the Milwaukee Bucks to finish in the NBA playoffs, and it is OK to
use a unary rewrite rule with a right-hand-side element that is a phrasal category. See
SLP3 Section 12.3.1 for an example of this, though it is a different unary rewrite than
you would use for this problem.)

C. The ambiguity of the preceding sentence is eliminated if you change can be to either
is or are. Why? Modify your grammar so that it captures this disambiguation effect.

5 Argument structure and unbounded dependencies in

context-free grammars

Let’s start with the following grammar in NLTK style (i.e., X -> Y1 ... Ym | Z1 ... Zn

means that there are two separate rules, X -> Y1 ... Ym and X -> Z1 ... Zn):

9.19, Instructor: Roger Levy, Fall 2023 5

S →NP VP
NP →Det N | Pronoun
VP →V
VP →V NP
VP →V SBAR
SBAR →WHNP S
SBAR →COMP S
COMP → ’that’ |
WHNP → ’who’ | ’what’
Det → ’the’ | ’a’ | ’an’ | ’my’ | ’your’ | ’her’ | ’his’ | ’their’
N → ’joke’ | ’women’ | ’umbrella’ | ’street’ | ’apple’
Pronoun→ ’I’ | ’you’ | ’she’ | ’he’ | ’they’
V → ’slept’ | ’devoured’ | ’know’ | ’said’ | ’know’

(Note: the rule COMP -> 'that' | expands out to COMP -> 'that' and COMP -> , the
latter of which is NLTK’s way of expressing an empty rewrite (i.e. it’s equivalent to COMP → ε).

This grammar will give correct parses for sentences like:

(1) I devoured the apple

(2) I said you slept

(3) you know what I devoured

However, it will incorrectly accept sentences like:

(4) *I slept that you said

(5) *the women devoured

(6) *I know what you said the joke

and incorrectly reject sentences like:

(7) you know who slept

(8) the women know who I said devoured the apple

A. Revise the grammar so that it correctly accounts for the different argument struc-
tures of the different verbs. Your grammar should now correctly reject (5) and (6)
but incorrectly reject (3).

B. Want a challenge? Examples like (8) involve unbounded dependency construc-
tions as covered in class. Implement meta-rules, using S, NP, VP, and SBAR as your
basic categories, and the non-terminal rewrites in the grammar as your basic
rules, to add a set of new derived categories and derived rules to your gram-
mar. Your grammar should now correctly accept and reject all the above examples.
(This challenge is not worth any points, but we will give you feedback on any solution
you offer.)

9.19, Instructor: Roger Levy, Fall 2023 6

	Using regular expressions to syllabify English words
	Regular expressions and finite-state automata
	A finite-state grammar for a fragment of English syntax
	Writing context-free grammars
	Argument structure and unbounded dependencies in context-free grammars

