9.19: Computational Psycholinguistics, Pset 2
due 4 October 2023

20 September 2023

1 Distance, similarity, and analogies in word embed-
dings

This problem set involves manipulating and using word embeddings: representations of
the semantics of words as high-dimensional vectors. We will be using off-the-shelf semantic
vectors derived in previous work (Pennington et al., 2014), called GloVe vectors. You should
download one of the data zip files from fhttps://nlp.stanford.edu/projects/glove/. We rec-
ommend glove.6B.zip, but you may use any of the vector files provided on the website.
Note that working with larger vector files will make processing times in your code slower.
Unzipping the file glove.6B.zip, you will see a number of .txt files. For the exercises be-
low, we recommend using the 300-dimensional vectors in the file glove.6B.300d.txt. (Note
that all words the GloVe word vector files are converted to lower-case, so you will have to
do the same in this exercise.)

We have prepared a Colab notebook contains Python code for downloading the GloVe
vectors and reading them into a dictionary data structure:

https://colab.research.google.com/drive /1 WuwOwlIt65bK1DZpc_ pBKVem4W9OH8mGk?
usp=sharing

We call the resulting dictionary e (for embedding), so calling e[’ car’] returns an array
representing the semantics of the word car, and so on.

1. One of the main functions of semantic vectors is to represent similarity relations among
words. For example, frog and toad are very similar in meaning, while frog and yesterday
are very dissimilar.

Write a function to compute the cosine similarity between two vectors. Cosine sim-
ilarity is a score between —1 and 1 indicating similarity, where 1 is maximal similarity

9.19, Instructor: Roger Levy, Fall 2023 1


https://nlp.stanford.edu/projects/glove/
https://colab.research.google.com/drive/1WuwOwIt65bK1DZpc_pBKVcm4W9OH8mGk?usp=sharing
https://colab.research.google.com/drive/1WuwOwIt65bK1DZpc_pBKVcm4W9OH8mGk?usp=sharing

and —1 is minimal similarity. Cosine similarity between two vectors A and B is defined
as:

i=1

_AB £
EYCTR oy
i=1 =1

Hint: You will probably find it faster and more convenient to use the function
numpy .dot from the numpy package rather than manually implementing all the sum-
mations above!

similarity = cos(6)

(a) Verify that your implementation of cosine similarity is correct by checking that it is
symmetrical: it should be the case that similarity(x,y) == similarity(y,x)
for all x and y. Demonstrate that this is the case with a few examples.

(b) As sanity checks, verify that the following similarity relations are true in the GloVe
vectors given your implementation of cosine similarity. Report the similarity
relations for these examples.

i. car is closer to truck than to person

ii. Mars is closer to Venus than to goes

iii. warm is closer to cool than to yesterday

iv. red is closer to blue than to fast

v. Come up with two more examples that demonstrate correct similarity rela-
tions.

vi. Come up with two examples where cosine similarity in the semantic vectors
does not align with your intuitions about word similarity.

(c) For the examples where cosine similarity does not match your intuitions, what do
you think went wrong?

(d) Extra credit: Try a different distance metric, such as Euclidean distance. Does
it result in qualitatively different patterns on your test suite?

2. Write a function to perform the analogy task: Given words wy, we, and ws, find a
word x such that wy : wy 2 w3 : x. For example, for the analogy problem France:Paris
. England:x, the answer should be London. To solve analogies using semantic vectors,
letting e(w) indicate the embedding for a word w, calculate a vector y = e(ws) —
e(wy) + e(ws) and find the word whose vector is closest to y.

(a) Explain why the analogy-solving method described above makes sense.
(b) Write a function to calculate y. The output should be a semantic vector.

(c) Write a function to find the nearest words to y in terms of cosine similarity, and
output the top 5.

9.19, Instructor: Roger Levy, Fall 2023 2



(d) Report the top 5 results for the following analogies, and describe whether you
think they are sensible and why:

i. France : Paris :: England : x
ii. man : woman :: king : x
iii. tall : taller :: warm : x

iv. tall : short :: warm : =

v. Come up with 4 more analogies, 2 of which work in your opinion, and 2 of
which do not work.

(e) Did you notice any patterns or generalizations while exploring possible analogies?
For the ones that went wrong, why do you think they went wrong?

2 Sentence acceptability and language models (LMs)—
n-gram and neural

For this problem, you will examine the relationship between sentence acceptability judgments
and different kinds of LANGUAGE MODEL probability distributions over word sequences, using
the following Colab notebook:

https://colab.research.google.com /drive/1bYewxeishiPNU95GOK5Y1XkMhlaDwa9h?usp=
sharing

Note that the problem specification in this PDF offers a high-level description, but all TODO
tasks can be completed in the Colab notebook.Your submission to Canvas for this problem
should be the completed Colab notebook exported as an .ipynb file.

As we covered in class on 27 September 2023, simply asking fluent speakers of a language
to rate sentences quantitatively for how “good” or “natural” they sound leads to fairly
reliable and reproducible judgments. What is the relationship between sentence probability
under a language model and native speaker judgments?

Empirically investigating this relationship requires three things: (I) a choice of a lan-
guage model with which to put probabilities on sentences; (II) a dataset of sentences with
acceptability judgments; (III) a hypothesized LINKING FUNCTION that quantitatively char-
acterizes the relationship between sentence probability and acceptability judgments. For this
problem, we will use the following:

(I) we will try an n-gram language model and also an autoregressive neural language
model, in particular the GPT-2 model released by OpenAl in 2019 (which is now well
behind the state of the art but still is very powerful);

(IT) we will use datasets released by Lau et al. (2017)) (https://doi.org/10.1111/cogs.12414;

datasets directly downloadable from https://gu-clasp.github.io/projects/smog/experiments/);

9.19, Instructor: Roger Levy, Fall 2023 3


https://colab.research.google.com/drive/1bYewxeishiPNU95G0K5Y1XkMhlaDwa9h?usp=sharing
https://colab.research.google.com/drive/1bYewxeishiPNU95G0K5Y1XkMhlaDwa9h?usp=sharing
https://doi.org/10.1111/cogs.12414
https://gu-clasp.github.io/projects/smog/experiments/

(ITI) we hypothesize that the acceptability of an n-word sentence wy, ws, ..., w, (or wi.,
for short) is monotonically increasing in one of the three following scores, where
Prodel(wy.,) is the joint probability of the sentence under the language model being
used:

(a) the total log-probability of the sentence under the language model:
lOg Pmodel (wlzn);
(b) the average per-word log-probability of the sentence under the language model:

lOg Pmodel (wlzn) .
n )

(c) or the syntactic log-odds ratio of the sentence, or SLOR for short, which is defined
as the following quantity:

1 Pmo e n -1 Puni ram n
SLOR 1 (s) = 8 Tetel{11n) =108 P11

n

where Pypigram (W1:n,) is the probability of the sentence under a unigram language
model (i.e. one that just scores word probabilities as their relative frequencies,
regardless of the sentence context). (This is a metric that was introduced by Pauls
& Klein, 2012 and used by Lau et al., 2017))

Tasks: The Colab notebook linked to above provides scaffolding code, including down-
loading the autoregressive n-gram and neural language models, downloading the acceptability
judgment datasets, and running the sentence-scoring functions (to be written by you) on the
sentences in the dataset. The basic function for each language model is the autoregressive
word probability:

—that is, the probability of the i-th token in a string given the context preceding the i-th
token. (We say TOKEN here, rather than “word”, because modern language models like
GPT-2 split many words into multiple sub-word tokens, which helps them generalize more
effectively to new words.)

Task 1: Using this basic function, you will need to write functions that produce each
of the three scores—total log-probability, average per-word log-probability, and SLOR—for
each language model.

Task 2: Once you've done this and run the rest of the code to populate the acceptability
judgments dataset with the three scores for each language model, compute the SPEARMAN
CORRELATION COEFFICIENT between each score and mean human acceptability ratings (in
Python, you can use the scipy.stats.spearmanr () function for this). Which scores and
language models work the best?

9.19, Instructor: Roger Levy, Fall 2023 4



Task 3: This task is designed to help you build insight into what n-gram models versus
contemporary larger neural language models capture regarding sentence structure. Design
your own sentences where there is a dramatic difference in conditional word probabilities for
the same (word, context) pair for the n-gram model versus the neural language model. Ac-
cording to your intuitions, which model better captures what human next-word expectations
are likely to be? What does this tell you about the relative strengths and weaknesses of the
two autoregressive language models?

References

Lau, J. H., Clark, A., & Lappin, S. (2017). Grammaticality, acceptability, and probability:
A probabilistic view of linguistic knowledge. Cognitive Science, 41(5), 1202-1241.

Pauls, A., & Klein, D. (2012). Large-scale syntactic language modeling with treelets, In
Proceedings of the 50th annual meeting of the association for computational linguistics
(volume 1: Long papers).

Pennington, J., Socher, R., & Manning, C. (2014). GloVe: Global vectors for word repre-
sentation, In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing.

9.19, Instructor: Roger Levy, Fall 2023 )



	Distance, similarity, and analogies in word embeddings
	Sentence acceptability and language models (LMs)—n-gram and neural

